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1 Background

This note documents the steps needed for an efficient GMM estimation of the re-
gression parameters and autoregressive parameters using the moment conditions
spelled out in Kelejian and Prucha (2010), Arraiz et al. (2010) and Drukker et al.
(2010, 2011) (jointly referred to in what follows as K-P-D). Theoretical details
are provided in those articles. The focus here is on the practical steps to carry
out estimation in a number of special cases. I will be using “we” below since
all this should eventually be moved into the Anselin-Rey spatial econometrics
text.

2 Model Specification and Notation

The model we consider is the mixed regressive spatial autoregressive model
with a spatial autoregressive error term, or so-called SAR-SAR model. Using
the notation from Anselin (1988), this is expressed as:

y = ρWy + Xβ + u.

The notation is standard, with y as a n × 1 vector of observations on the
dependent variable, W as a n × n spatial lag operator and Wy as the spatial
lag term with spatial autoregressive parameter ρ, X as an n × k matrix of
observations on exogenous explanatory variables with k× 1 coefficient vector β,
and a n× 1 vector of errors u. The specification can be made more general, by
including additional endogenous variables:

y = ρWy + Xβ + Yγ + u,

where Y is a n × s matrix of observations on endogenous variables other than
the spatially lagged dependent variable, with associated coefficient vector γ.

When endogenous variables are included (either a spatial lag, other endoge-
nous variables, or both), a n× p matrix of instruments H will be needed.
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An alternative way to express the model is as:

y = Zδ + u, (1)

where Z = [X,Y,Wy] and the k + s × 1 coefficient vector is rearranged as
δ = [β′γ′ρ]′ (i.e., a column vector).

The error vector u follows a spatial autoregressive process:

u = λWu + ε

where λ is the spatial autoregressive parameter, and with heteroskedastic inno-
vations, such that E[ε2i ] = σ2

i . All other assumptions are standard.
Note that, in contrast to the general case outlined by K-P-D, we take the

weights matrix in the spatial lag and in the spatial error part to be the same
(W). In K-P-D, the weights matrix for the error term is denoted as M. While
this is more general, it is hardly ever used in practice, hence we limit our treat-
ment to the simpler case.

2.1 Spatially Lagged Variables

Spatially lagged variables play an important part in the GMM estimation pro-
cedure. In the original K-P-D papers, these are denoted by “bar” superscripts.
Instead, we will use the L subscript throughout. In other words, a first order
spatial lag of y, i.e., Wy is denoted by yL, and similarly for spatially lagged
explanatory variables, XL, and for ZL. Higher order spatial lags are symbolized
by adding additional L subscripts. For example, a second order spatial lag of
the error u would be uLL.

2.2 Spatial Cochrane-Orcutt Transformation

An important aspect of the estimation is the use of a set of spatially filtered
variables in a spatially weighted regression. K-P-D refer to this as a spatial
Cochrane-Orcutt transformation. The spatial filter is based on the weights
matrix and the spatial autoregressive parameter for the error process. Since
there is no distinction between the two weights here, the matrix W is used
throughout. In the notation of what follows, we will use a subscript s for
the spatially filtered variables. Also, to keep the notation simple, we will not
distinguish between the notation for a parameter and its estimate. In practice,
an estimate is always used, since the true parameter value is unknown.
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The spatially filtered variables are then:

ys = y − λWy

= y − λyL
= (I− λW)y

Xs = X− λWX

= X− λXL

= (I− λW)X
Wys = Wy − λWWy

= yL − λyLL
= (I− λW)Wy

Zs = Z− λWZ

= Z− λZL
= (I− λW)Z

3 Outline of the GMM Estimation Procedure

The GMM estimation is carried out in multiple steps. The basic rationale is
the following. First, an initial estimation yields a set of consistent (but not
efficient) estimates for the model coefficients. For example, in a model with
only exogenous explanatory variables, this would be based on ordinary least
squares (OLS). In the presence of endogenous explanatory variables, two stage
least squares (2SLS) would be necessary.

The initial consistent estimates provide the basis for the computation of a
vector of residuals, say u (here, we do not use separate notation to distinguish
the residuals from the error terms, since we always need residuals in practice).
The residuals are used in a system of moment equations to provide a first con-
sistent (but not efficient) estimate for the error autoregressive coefficient λ. The
consistent estimate for λ is used to construct a weighting matrix that is neces-
sary to obtain the optimal (consistent and efficient) GMM estimate of λ in a
second iteration.

A third step then consists of estimating the regression coefficients (β and ρ, if
appropriate) in a spatially weighted regression, using spatially filtered variables
that incorporate the optimal GMM estimate of λ.

At this point, we could stop the estimation procedure and use the values of
the regression coefficients, the corresponding residuals, and λ to construct a joint
asymptotic variance-covariance matrix for all the coefficients (both regression
and λ). Alternatively, we could go through another round of estimation using
the updated residuals in the moment equations and potentially going through
one more spatially weighted regression. While, asymptotically, there are no
grounds to prefer one over the other, in practice there may be efficiency gains
from further iterations.
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Finally, the estimation procedure as outlined in K-P-D only corrects for
the presence of spatial autoregressive errors, but does not exploit the general
structure of the heteroskedasticity in the estimation of the regression coefficients.
The main contribution of K-P-D is to derive the moment equation such that
the estimate for λ is consistent in the presence of general heteroskedasticity.
The initial GM estimator presented in Kelejian and Prucha (1998, 1999) is
only consistent under the assumption of absence of heteroskedasticity. We will
need to further consider if the incorporation of both spatial autoregressive and
heteroskedastic structures for the error variance in a feasible generalized least
squares procedure (FGLS) improves the efficiency of the regression coefficients.

3.1 Selection of Instruments

Instruments are needed whenever endogenous variables are present in the regres-
sion specification and 2SLS is carried out. We consider the most general case,
where Z = [X,Y,Wy], with Y as a n×s matrix of observations on endogenous
variables other than the spatially lagged dependent variable.

We need instruments for the spatially lagged dependent variable and for the
endogenous variables. For the spatial lag, a number of papers have discussed
the use of optimal instruments (e.g., Lee 2003, Das et al. 2003, Kelejian et al.
2004, Lee 2007). The basis for this follows from the reduced form of the spatial
lag specification:

y = (I− ρW)−1(Xβ + u),

so that the optimal instruments for Wy consist of W(I−ρW)−1Xβ. In practice,
the instruments consist of the exogenous variables and spatial lags of these, e.g.,
H = [X,XL,XLL, . . . ].

When additional endogenous variables are included in the regression spec-
ification, instruments must be included for those as well. We refer to this in-
struments matrix as Q, for which the usual identification restrictions need to
be satisfied, such that there are at least as many instruments as endogenous
variables. This is elaborated upon for a fully specified system of simultaneous
equations in Kelejian and Prucha (2004). For our purposes, consider the simple
case of one additional endogenous variable y2, which itself is determined by a
number of additional exogenous variables X∗ in a linear specification for its
reduced form:

y2 = X∗β ∗ +v,

with β∗ as the coefficient vector and v as an idiosyncratic error. Substituting
the result back into the reduced form for y yields:1

y = (I− ρW)−1(Xβ + X∗β ∗ +v + u).

This would suggest that X∗ and its spatial lags should be included in the in-
strument matrix H. In general, in the absence of a full systems specification,

1In general, the second endogenous variable may also depend on the spatial lag, in which
case the simple expression for the reduced form given here does not hold.
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it is not possible to obtain optimal instruments. In the most general case, the
instrument matrix H should consist of both X and its spatial lags as well as Q
and its spatial lags:

H = [X,XL,XLL, . . . ,Q,QL,QLL, . . . ]

The effect of the selection of instruments on the efficiency of the estimators
remains to be further investigated.

4 General Moment Equations

The point of departure for K-P-D’s estimation procedure are two moment con-
ditions, expressed as functions of the innovation terms ε. They are:

n−1E[ε′LεL] = n−1tr[Wdiag[E(ε2i )]W
′] (2)

n−1E[ε′Lε] = 0, (3)

where εL is the spatially lagged innovation vector and tr stands for the matrix
trace operator. The main difference with the moment equations in Kelejian and
Prucha (1999) is that the innovation vector is allowed to be heteroskedastic of
general form, hence the inclusion of the term diag[E(ε2i )] in Equation 2. In
the absence of heteroskedasticity, the RHS of the first condition simplifies to
σ2n−1tr[WW′]. With σ2 replaced by E[(n−1)ε′ε], the first moment condition
then becomes:

n−1E[ε′LεL] = E[n−1ε′ε](n−1)tr[WW′]
= n−1E[ε′(n−1)tr[WW′]Iε]

4.1 Simplifying Notation

K-P-D introduce a number of simplifying notations that allow the moment con-
ditions to be written in a very concise form. Specifically, they define

A1 = W′W − diag(w′.iw.i) (4)
A2 = W, (5)

where w.i is the i-th column of the weights matrix W. Upon further inspection,
we see that each element i of the diagonal matrix diag(w′.iw.i) consists of the
sum of squares of the weights in the i-th column. In what follows, we will
designate this diagonal matrix as D.

Using the new notation, the moment conditions become:

n−1E[ε′A1ε] = 0
n−1E[ε′A2ε] = 0

In order to operationalize these equations, the (unobservable) innovation
terms ε are replaced by their counterpart expressed as a function of regression
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residuals. Since u = λuL + ε, it follows that ε = u − λuL = us, the spatially
filtered residuals. The operational form of the moment conditions is then:

n−1E[u′sA1us] = 0 (6)
n−1E[u′sA2us] = 0 (7)

4.2 Nonlinear Least Squares

The initial consistent estimate for λ is obtained by solving the moment condi-
tions in Equations 6 and 7 for this parameter, which is contained within us.
The parameter enters both linearly and in a quadratic form. Since there are
two equations, there is no solution that actually sets the results to zero for both
equations. Consequently, we try to get as close to this as possible and use a
least squares rationale. In other words, if we consider the LHS of the equation
as a deviation from zero, we try to minimize the sum of squared deviations.

In order to implement this in practice, K-P-D reorganize the equations as
explicit functions of λ and λ2. This takes on the general form:

m = g −G
[
λ
λ2

]
= 0, (8)

such that an initial estimate of λ is obtained as a nonlinear least squares solution
to these equations, argminλ(m′m).

The vector g is a 2×1 vector with the following elements, as given by K-P-D:

g1 = n−1u′A1u (9)
g2 = n−1u′A2u, (10)

with the A1,2 as defined above, and u is a vector of residuals. Note that there
is actually no gain in using the notation A2, since it is the same as W.

For computational purposes, it is useful to work out these expressions and
express them as cross products of the residuals and their spatial lags. This
yields:

g1 = n−1[u′LuL − u′Du]
g2 = n−1u′uL,

The matrix G is a 2 × 2 matrix with the following elements, as given by
K-P-D:

G11 = 2n−1u′W′A1u (11)
G12 = −n−1u′W′A1Wu (12)
G21 = n−1u′W′(A2 + A′2)u (13)
G22 = −n−1u′W′A2Wu (14)

As before, this simplifies into a number of expressions consisting of cross
products of the residuals and their spatial lags. Specifically, note that Wu = uL,
and WWu = uLL, and, similarly, u′W′ = u′L and u′W′W′ = u′LL.
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Considering each expression in turn, we find:

G11 = 2n−1u′LA1u (15)
= 2n−1[u′LLuL − u′LDu]

G12 = −n−1u′LA1uL (16)
= −n−1[u′LLuLL − u′LDuL]

G21 = n−1u′L(W + W′)u (17)
= n−1[u′LuL + u′LLu]

G22 = −n−1u′LWuL (18)
= −n−1u′LuLL

So, in summary, in order to compute the six elements of g and G, we need five
cross product terms: u′uL, u′uLL, u′LuL, u′LuLL, and u′LLuLL. In addition,
we need three weighted cross products: u′Du, u′LDu, and u′LDuL (note that
Du only needs to be computed once). Alternatively, if the matrix A1 is stored
efficiently in sparse form, we can use the cross products u′A1u, u′LA1u and
u′LA1uL.

Given a vector of residuals (from OLS, 2SLS or even Generalized Spatial
2SLS), the expression for g and G give us a way to obtain a consistent estimate
for λ.

4.3 Weighted Nonlinear Least Squares

The estimates for λ obtained from the nonlinear least squares are consistent,
but not efficient. Optimal estimates are found from a weighted nonlinear least
squares procedure, or, argminλm′Ψ−1m, where Ψ is a weighting matrix. The
optimal weights correspond to the inverse variance of the moment conditions.

K-P-D show the general expression for the elements of the 2 × 2 matrix Ψ
to be of the form:

ψq,r = (2n)−1tr[(Aq + A′q)Σ(Ar + A′r)Σ] + n−1a′qΣar, (19)

for q, r = 1, 2 and with Σ as a diagonal matrix with as elements (ui− λuLi
)2 =

u2
si

, i.e., the squares of the spatially filtered residuals. The second term in this
expression is quite complex, and will be examined more closely in Sections 4.3.2
and 4.3.3 below. However, it is important to note that this second term becomes
zero when there are only exogenous explanatory variables in the model (i.e.,
when OLS is applicable). The term derives from the expected value of a cross
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product of expressions in the Z matrix and the error term u. Hence, when no
endogenous variables are included in Z, the expected value of this cross product
amounts to E[u] = 0.

The fundamental result from which the form of the variance-covariance ma-
trix in Equation 19 follows was established in the central limit theorem for a
linear quadratic form in Kelejian and Prucha (2001, pp. 226–227). In general,
the quadratic form is specified as:

f = ε′Aε+ b′ε

=
∑
i

∑
j

aijεiεj +
∑
i

biεi

where the εi are independent error terms and the matrix A is taken to be sym-
metric (for the full set of assumptions, see Kelejian and Prucha 2001).2 Under
the maintained set of assumptions, the mean and variance of this quadratic form
are:

µ(f) =
n∑
i=1

aiiσ
2
i

σ2(f) = 4
n∑
i=1

i−1∑
j=1

a2
ijσ

2
i σ

2
j +

n∑
i=1

b2iσ
2
i

+
n∑
i=1

a2
ii(µ

(4)
i − σ4

i ) + 2
n∑
i=1

biaiiµ
(3)
i ,

with σ2
i = E[ε2i ], µ

(3)
i = E[ε3i ] and µ

(4)
i = E[ε4i ]. Note that when the diagonal

elements of the matrix A are all zero, then µq = 0 and the last two terms in
the expression for the variance disappear. The variance-covariance matrix Ψ
is constructed from the variances and covariances between (n−1)E[ε′A1ε] and
(n−1)E[ε′A2ε]. These conform to the general structure f = ε′Aq,rε + bq,r

′ε
of Lemma A.1. in Kelejian and Prucha (2010, pp. 62–63) with mean and
covariance as:

µ(1,2)(f) =
n∑
i=1

aii,(1,2)σ
2
i

σq,r(f) = 2
n∑
i=1

n∑
j=1

aij,qaij,rσ
2
i σ

2
j +

n∑
i=1

bi,qbi,rσ
2
i

+
n∑
i=1

aii,qaii,r[µ
(4)
i − 3σ4

i ] +
n∑
i=1

(bi,qaii,r + bi,raii,r)µ
(3)
i

2As argued in Kelejian and Prucha (2001, footnote 10), when A is not symmetric, it can
be readily replaced by (1/2)(A + A′).
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4.3.1 OLS Estimation

In the simplest case when no endogenous variables are present in the model, we
only need to consider the trace term to obtain the elements of ψq,r. Note that
A1 is symmetric, so that A1 + A′1 = 2A1. Also, A2 = W so that we don’t
need the extra notation at this point.

Consequently, we obtain the following results:

ψ11 = (2n)−1tr[(2A1)Σ(2A1)Σ]
= 2n−1tr[A1ΣA1Σ],

ψ12 = (2n)−1tr[(2A1)Σ(W + W′)Σ]
= n−1tr[A1Σ(W + W′)Σ],

ψ21 = ψ12,

ψ22 = (2n)−1tr[(W + W′)Σ(W + W′)Σ]

For computational purposes, it is important to keep in mind that while the
matrices A1,2 are of dimension n × n, they are typically very sparse. Further-
more, the matrix Σ is a diagonal matrix, such that post-multiplying a matrix
by Σ amounts to re-scaling the columns of that matrix by the elements on the
diagonal of Σ.

4.3.2 Standard 2SLS Estimation

The expression for ar, with r = 1, 2, for the case where the estimates are
obtained from 2SLS is given in K-P-D as follows:

ar = (I− λW′)−1HPαr, (20)

with H as a n× p matrix of instruments,

P = (n−1H′H)−1(n−1H′Z)[(n−1Z′H)(n−1H′H)−1(n−1H′Z)]−1, (21)

as a matrix of dimension p× k, and

αr = −n−1[Z′(I− λW′)(Ar + A′r)(I− λW)u],

where αr is a vector of dimension k × 1. As a result, ar is of dimension n× 1.
First, let’s take a closer look at αr, for r = 1, 2. Note that Z′(I− λW′) can

be written in a simpler form as Z′s. Similarly, (I−λW)u is us. For both filtered
variables, we use the value of λ from the unweighted nonlinear least squares.

For α1, since A1 is symmetric, A1 + A′1 = 2A1, and the corresponding
expression can be written as:

α1 = −2n−1[Z′sA1us]
= −2n−1[Z′sL

usL
− Z′sDus],
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where Z′sL
and usL

are the spatial lags (using weights matrix W) of respectively
the spatially filtered Z and the spatially filtered u. For α2, the expression is:

α2 = −n−1[Z′s(W + W′)us]
= −n−1[Z′susL

+ Z′sL
us]

For easy computation, we will need Zs and us, as well as their spatial lags, ZsL

and usL
, and the three cross products Z′sA1us, Z′susL

and Z′sL
us.

Pre-multiplying the respective expressions for α1 and α2 with the matrix
P yields a vector of dimension p × 1 (p is the number of instruments). Pre-
multiplying this result with the matrix H results in a vector or dimension n×1.
We will refer to this as vector vr (with r = 1, 2).

At first sight, the presence of the inverse matrix (I−λW′)−1 in the expression
for ar in Equation 20 would seem to preclude large data analysis. However,
we can exploit the approach outlined in Smirnov (2005). The typical power
expansion (Leontief expansion) of the inverse matrix yields:

(I− λW)−1 = I + λW + λ2WW + . . .

As such, this does not help in computation, since the weights matrices involved
are still of dimension n×n. Also, the expression in Equation 20 pertains to the
transpose of W, i.e., (I− λW′)−1. In order to apply the power expansion, it is
easier to consider the transpose of ar:

a′r = α′rP
′H′(I− λW)−1 = v′r(I− λW)−1, (22)

where v′r is a vector of dimension 1 × n.
Using the power expansion yields:

a′r = v′r[I + λW + λ2WW + . . . ]
= v′r + λv′rW + λ2v′rWW + . . .

This operation is relatively easy to implement computationally, since once λv′rW
is obtained (a vector of dimension 1×n), all higher order terms consist of post-
multiplying this vector with the (sparse) weights matrix W and the scalar λ.
Depending on the value of λ, a reasonable approximation is readily obtained for
a relatively low power in the expansion. For example, a value of λ of 0.5 (which
is relatively large in practice) reduces to 0.00098 after a tenth power.3

With these elements in hand, we obtain the terms a1 and a2 needed in the
expression a′qΣar, which, together with the trace terms, yield the four elements
of the matrix Ψ.

3For high values of λ, much higher powers are needed in order to obtain a reasonable
approximation. For example, 0.9 to the tenth power is still 0.35, but after fifty powers (i.e.,
fifty lag operations) it is 0.005.
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4.3.3 Spatially Weighted Estimation

When the residuals used in the GMM estimation for λ are not the result of a
standard procedure (such as OLS or 2SLS), but instead of a spatially weighted
regression (such as SWLS or GS2SLS), the expressions for the optimal weighting
matrix are different in two respects. The main difference is that the inverse term
is no longer present in Equation 20 for ar, which now becomes:

ar = HPαr (23)

The second difference is that the spatially filtered Zs are used in the expression
for P instead of Z. The expression for P thus becomes:

P = (n−1H′H)−1(n−1H′Zs)[(n−1Z′sH)(n−1H′H)−1(n−1H′Zs)]−1 (24)

5 Estimation Steps

For the purposes of this discussion, we will express the model in a generic form
as in Equation 1, which we repeat here:

y = Zδ + u.

This encompasses the two main cases. In the first, no endogenous variables are
present (and thus also no spatially lagged dependent variable) and Z = X in
the usual notation. In the second case, endogenous variables are present. By
convention, we will sort the variables such that the exogenous variables come
first and the endogenous second. In the special case of a mixed regressive spatial
autoregressive model, Z = [X,Wy], and δ = [β′, ρ]′.

The actual estimation proceeds in several steps, which are detailed in what
follows.

5.1 Step 1 – Initial Estimates

The initial set of estimates, which we will denote as δ1, are obtained from either
OLS or 2SLS estimation of the model. In case of OLS, this yields:

δ1,OLS = (Z′Z)−1Z′y,

When endogenous variables are present (including the case of a spatially lagged
dependent variable), a matrix of instruments H is needed and estimation follows
from:

δ1,2SLS = (Ẑ′Ẑ)−1Ẑ′y,

with Ẑ = H(H′H)−1H′Z, or, in one expression, as:

δ1,2SLS = [Z′H(H′H)−1H′Z]−1Z′H(H′H)−1H′y.

In the presence of a spatially lagged dependent variable, the instruments
should include multiple orders of spatial lags of the exogenous explanatory
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variables. In practice, up to two orders may be sufficient, such that H =
[X,XL,XLL]. As always, care must be taken to avoid multicollinear instru-
ments. For examples, this may be a problem when indicator variables are in-
cluded in the model.

The estimates δ1 yield an initial vector of residuals, u1 as:

u1 = y − Zδ1.

5.2 Step 2 – Consistent Estimation of λ

A first consistent estimate for λ, say λ1, is obtained by substituting u1 into the
moment equations of Section 4.2 and finding a solution by means of nonlinear
least squares.

5.3 Step 3 – Efficient and Consistent Estimation of λ

An efficient estimate of λ is obtained by substituting the values of λ1 and u1

into the elements of Equation 19 as specified in Section 4.3.2. This yields the
weighting matrix Ψ(λ1), which then allows for a weighted nonlinear least squares
solution to the moments equations. This results in the estimate λ2.

At this point, we could stop and move to the construction of the asymptotic
variance matrix of the estimates, as outlined in Section 6.1. For example, this
would be relevant if we were only interested in testing the null hypothesis H0 :
λ = 0.

Typically, however, one does not stop here and moves on to a spatially
weighted estimation of the regression coefficients, which takes into account the
consistent and efficient estimate λ2 of the nuisance parameter. Note that only
consistency of λ is required to obtain consistent estimates of the δ coefficients.
The use of the more efficient λ2 should result in more efficient estimates of δ as
well, but consistency is not affected by this.

5.4 Step 4 – Spatially Weighted Estimation

The rationale behind spatially weighted estimation is that a simple transfor-
mation (the so-called spatial Cochrane-Orcutt) removes the spatial dependence
from the error term in the regression equation:

(I− λW)y = (I− λW)Zδ + (I− λW)u
ys = Zsδ + ε,

where ys and Zs are filtered variables, and ε is a heteroskedastic, but not
spatially correlated innovation term.

We distinguish between two situations. In one, there are only exogenous
variables in the regression, so that Spatially Weighted Least Squares (SWLS)
is an appropriate estimation method. In the other, the presence of endoge-
nous variables requires the use of 2SLS. The special case of a regression with a
spatially lagged dependent variable also falls in this category.
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5.4.1 Spatially Weighted Least Squares – SWLS

Spatially Weighted Least Squares is simply OLS applied to the spatially filtered
variables:

δ2,SWLS = (Z′sZs)−1Z′sys. (25)

5.4.2 Generalized Spatial Two Stage Least Squares - GS2SLS

Similarly, Generalized Spatial Two Stage Least Squares is 2SLS applied to the
spatially filtered variables:

δ2,GS2SLS = [Z′sH(H′H)−1H′Zs]−1Z′sH(H′H)−1H′ys. (26)

Note that the instrument matrix H is the same as in Step 1.

5.4.3 Residuals

The new estimate coefficient vector δ2 yields an updated vector of residuals as:

u2 = y − Zδ2.

Note that the residuals are computed using the original variables and not the
spatially filtered variables.

5.5 Step 5 – Iteration

The updated residual vector u2 can now be used to obtain a new estimate for
λ. Since this is based on a spatially weighted regression, the proper elements of
the weighting matrix Ψ are given in Section 4.3.3, with λ2 and u2 substituted
in the expressions. The solution by means of weighted nonlinear least squares
yields the consistent and efficient estimate λ3.

At this point, the value of λ3 can be used together with δ2 to construct an
asymptotic variance matrix, as outlined in Section 6.2. This allows for joint
inference on the coefficients δ and the spatial autoregressive term λ.

Alternatively, the new value of λ3 could be used in an updated spatially
weighted estimation to yield a new set of estimates for δ and an associated
residual vector u. These can then be substituted in the moment equations and
in Ψ to result in a new estimate for λ. This iteration can be continued until a
suitable stopping criterion is met. To date, there is no evidence as to the benefits
of iteration beyond λ3, but this remains a subject for further investigation.

6 Asymptotic Variance Matrix

The asymptotic variance-covariance matrix Ω is for both the estimates of δ and
the estimate of λ. For the spatial lag model, δ includes the spatial autoregressive
coefficient ρ (for ease of notation, included as the last element in the vector).
We distinguish between two major situations. In one, the estimates are based
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on Steps 1–3. In other words, δ are the initial estimates of the regression model,
and λ is the consistent and efficient GMM estimate. In the second case, the
estimates are based on a spatially weighted estimation, including Steps 4 and
5. For each of these cases, we further distinguish between a model where only
exogenous variables are present (estimated by OLS and SWLS), and a model
where endogenous variables are included (estimated by 2SLS and GS2SLS). The
latter encompasses the spatial lag model as a special case. In order to carry out
inference, n−1Ω is used instead of Ω as such.

To facilitate the expression for the asymptotic variance-covariance matrix,
K-P-D introduce some additional notation. First, an auxiliary 2× 1 vector J is
defined, constructed as:

J = G
[

1
2λ

]
, (27)

where the elements of the 2 × 2 matrix G are from Equations 15–18. K-P-D
further define the overall weighting matrix Ψo as consisting of four submatrices,
as in:

Ψo =
[
Ψδδ Ψδλ

Ψ′δλ Ψ

]
,

where Ψ is the weighting matrix of Equation 19, and the other submatrices
differ between the standard estimation (Section 6.1) and the spatially weighted
estimation (Section 6.2). Note that the dimension of the matrix Ψo is (p+ 2)×
(p+ 2), where p is the number of instruments, and Ψ is of dimension 2 × 2.

The estimator for the variance-covariance matrix takes on the general form:

Ω =
[
P′ 0
0 (J′Ψ−1J)−1J′Ψ−1

]
Ψo

[
P 0
0 Ψ−1J(J′Ψ−1J)−1

]
, (28)

where P, of dimension p × k, is constructed differently for each model. Note
that the dimension of the first matrix expression is (k + 1) × (p + 2), with the
matrix in the lower right hand corner being of dimension 1× 2. The product of
the three matrices yields a result of dimension (k + 1) × (k + 1).

6.1 First Step Estimation

The submatrices of Ψo appropriate for the case of estimation in the first step
of the procedure are:

Ψδδ = n−1H′(I− λW)−1Σ(I− λW′)−1H (29)

and
Ψδλ = n−1H′(I− λW)−1Σ[a1,a2]. (30)

In these expressions,4 the residuals from the initial estimation are used, i.e., u1,
together with the efficient and consistent estimate λ2. The diagonal elements
of Σ are the squares of the spatially filtered residuals, u2

1is = (u1i − λ2u1iL)2.
4Note that there is a typo in the expression in Equation (B2) on p. 612 of Arraiz et al.

(2010). The correct expression for Ψδδ and for Ψδρ (in their notation) should include the
matrix inverse operation (see A4 on p. 611).
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6.1.1 OLS

In the special case of OLS estimation, H = Z (or, X) and the expression for P
simplifies to (n−1Z′Z)−1. In addition, we have shown that in this case both a1

and a2 are zero. As a result, the weighting matrix Ψo is block-diagonal
After some matrix algebra, the variance-covariance matrix follows as:

ΩOLS =
[
n(Z′Z)−1Z′(I− λW)−1Σ(I− λW′)−1Z(Z′Z)−1 0

0 (J′Ψ−1J)−1

]
Note that the main computational issue in Z′(I − λW)−1 is post-multiplying
the p × n matrix Z′ with an inverse matrix of dimension n × n. In practice,
we will again exploit the power expansion that was described in Section 4.3.2.
Once this matrix expression is computed, its transpose is (I− λW′)−1Z.

6.1.2 2SLS

The 2SLS case follows as a straightforward implementation of Equation 28, with
P as in Equation 21 (repeated here for convenience):

P = (n−1H′H)−1(n−1H′Z)[(n−1Z′H)(n−1H′H)−1(n−1H′Z)]−1,

The submatrices of Ψo are as in Equations 29 and 30. The residuals are u1

from the 2SLS regression, and the spatial parameter is again λ2.
Note that in practice, these asymptotic variance-covariance matrices will

seldom be used. They are appropriate for the case where the initial estimates
from respectively OLS or 2SLS are not further improved upon. In practice, this
is rarely of interest, since the whole purpose is to obtain more efficient estimates
for the model parameters from the spatial Cochrane-Orcutt procedure.

6.2 Spatially Weighted Estimation

In the typical case where the estimates for δ are derived from a spatially weighted
regression (yielding δ2) in a second estimation step, the relevant submatrices of
Ψo take the form:

Ψδδ = n−1H′ΣH (31)

and
Ψδλ = n−1H′Σ[a1,a2]. (32)

The expressions for a1 and a2 are as in Equation 23, using u2 as the residual
vector and λ3 for the autoregressive parameter. The diagonal elements of Σ are
the squares of the spatially filtered residuals, u2

2is = (u2i − λ3u2iL)2. Note that
it is no longer necessary to compute the inverse matrix (I− λW)−1.
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6.2.1 SWLS

When there are no endogenous variables present in Z, the matrix Ψo is again
block-diagonal, since Ψδλ = 0. Also, the expression for P simplifies to (n−1Z′sZs)−1,
a cross-product in the spatially filtered explanatory variables (using λ3). Simi-
larly, Equation 31 becomes Ψδδ = n−1Z′sΣZs.

After some matrix algebra, the variance-covariance matrix follows as:

ΩSWLS =
[
n(Z′sZs)

−1Z′sΣZs(Z′sZs)−1 0
0 (J′Ψ−1J)−1

]
.

6.2.2 GS2SLS

The relevant expression for P is as in Equation 24, repeated here for convenience:

P = (n−1H′H)−1(n−1H′Zs)[(n−1Z′sH)(n−1H′H)−1(n−1H′Zs)]−1

The submatrices of Ψo are as in Equations 31 and 32. The residuals are u2

from the GS2SLS regression, and the spatial parameter is λ3.

7 Accounting for Heteroskedasticity in FGLS

The estimation equations for the weighted spatial regression in Kelejian and
Prucha (2010) and Arraiz et al. (2010) implement the spatial Cochrane-Orcutt
transformation, but do not correct for the presence of unspecified heteroskedas-
ticity. As shown in Anselin (2006, p. 931), among others, the latter could be
implemented by exploiting the classic result of White (1980) and including a
consistent estimate for X′ΣX or H′ΣH in the second stage estimation in Step
4. Note that the role of these cross products is explicit in the estimates for the
variance-covariance matrix.

7.1 SWLS with Heteroskedasticity

Equation 25 is adjusted to account for unspecified heteroskedasticity and be-
comes:

δ2,HSWLS = [(Z′sZs)(Z′sΣZs)−1(Z′sZs)]−1(Z′sZs)(Z′sΣZs)−1Z′sys,

with the spatially filtered variables and the spatially filtered residuals based on
λ2 and u1.

7.2 GS2SLS with Heteroskedasticity

Similarly, Equation 26 is adjusted to account for unspecified heteroskedasticity
and becomes:

δ2,HS2SLS = [(Z′sH)(H′ΣH)−1(H′Zs)]−1(Z′sH)(H′ΣH)−1H′ys,

again, with the spatially filtered variables and the spatially filtered residuals
based on λ2 and u1.
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8 General Two-Step Estimation in the Absence
of Heteroskedasticity

In the recent working papers by Drukker et al. (2010, 2011), a general framework
is presented for a two-step GMM estimation of the parameters in a SAR-SAR
specification, allowing for endogenous variables other than the spatial lag. The
moment conditions spelled out in the paper are more general than in previous
work. Specifically, up to S weighting matrices As are allowed, which do not
need to have zero diagonal, but only trAs = 0 (zero diagonals being a special
case). The moment conditions take the same form as in Section 4.1:

n−1E[ε′Asε] = 0, (33)

for s = 1, . . . , S.
The two step estimator actually consists of four steps, each of the two major

steps consisting of two sub-steps. We consider each in turn.

8.1 Step One

The first step is identical to Step 1 in Section 5.1 and consists of either OLS or
2SLS estimation of the model to obtain an initial set of coefficient estimates δ1
and residuals, u1.

8.1.1 Moment Conditions

The residuals u1 are used to solve the set of moment equations given in Equa-
tion 33. As in Section 4.2, the equations are re-organized in the same fashion
as in Equation 8, using spatially filtered residuals instead of the error terms. In
general, the S×1 vector m consists of the elements ms = (n−1)(u−λuL)′As(u−
λuL). After some algebra, it is easy to see that this consists of a constant term,
two terms in λ and one term in λ2:

ms = (n−1)u′Asu− (n−1)(u′AsuL + u′LAsu)λ− (n−1)(−u′LAsuL)λ2,

or

ms = (n−1)u′Asu− (n−1)
[
u′AsuL + u′LAsu −u′LAsuL

] [ λ
λ2

]
. (34)

The first term in Equation 34 is the element of the s − th row of g, whereas
the two elements in the row vector form the s− th row of the S × 2 matrix G.
Note that Drukker et al. (2010, p. 7) assume that the matrix As is symmetric,
in which case:

u′AsuL + u′LAsu = u′LA′su + u′LAsu (35)
= u′L(As + A′s)u (36)
= 2u′LAsu. (37)
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However, in general, this is not the case. For example, for A2 = W, this will not
hold unless the weights matrix is symmetric (which is typically not the case).
This can be remedied by setting A2 = (1/2)(W + W′).

For the homoskedastic case, the first moment equation results in a matrix
A1 of the form (see, e.g., Kelejian and Prucha 2010, footnote 7):5

A1 = W′W − (n−1)tr(W′W)I.

Note that A1 is symmetric with trA1 = 0, but its diagonal elements are non-
zero.

The second moment equation is the same as in the heteroskedastic case,
Equation 5, with A2 = W, or, if the general expressions as in Equation 37 are
used, with A2 = (1/2)(W + W′). Both trA2 = 0 and its diagonal elements are
zero.

To recap, the moment conditions take on the general form:

m = g −G
[
λ
λ2

]
= 0,

with:

g1 = n−1u′A1u

g2 = n−1u′A2u,

and the 2 × 2 matrix G with the following elements:

G11,21 = 2n−1u′LA1,2u (38)
G12,22 = −n−1u′LA1,2uL (39)

An initial consistent estimate of λ, say λ1 is obtained as a nonlinear least
squares solution to argminλ(m′m). Note that unlike the heteroskedastic ap-
proach in Kelejian and Prucha (2010) and Arraiz et al. (2010), this is not fol-
lowed by an efficient GMM estimation step at this stage, i.e., using a weighting
matrix.

8.2 Step Two – Consistent and Efficient Estimation of λ

The first part of the second step consists of a spatial Cochrane-Orcutt esti-
mation, identical to the procedure outlined in Section 5.4. In the absence of
spatially lagged and endogenous variables, this boils down to OLS on the spa-
tially filtered variables:

δ2,SWLS = (X′sXs)−1X′sys.

5Kelejian and Prucha (2010, Equation 9) present the derivation in the context of a weighted
nonlinear least squares estimator with a moments weighting matrix. The element correspond-
ing to the first moment condition is ν = 1/[1 + [(n−1tr(WW′)]2]. In Drukker et al. (2010,
2011) this scalar is included in A1. However, since the first solution is intended to produce a
consistent estimate for λ, it is not clear why the scalar should be included.
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When either spatially lagged or endogenous variables are present (or both),
then the generalized spatial two stage least squares estimation is appropriate
(we repeat the expression here for convenience):

δ2,GS2SLS = [Z′sH(H′H)−1H′Zs]−1Z′sH(H′H)−1H′ys.

Note that the instrument matrix H is the same as in Step 1. Specifically, these
instruments are NOT spatially filtered.

We obtain a new set of residuals as u2 = y − Zδ2. More importantly, we
also construct the spatially filtered residuals u2s, using the value λ1. Both Zs
and us are needed to carry out efficient GMM estimation of λ, as the result
of argminλm′Ψ−1m, where Ψ is a weighting matrix. The optimal weights
correspond to the inverse variance of the moment conditions.

The results are very similar to those in Section 4.3, except that heteroskedas-
ticity is not allowed for. In general, the elements of the 2 × 2 matrix Ψ are:

ψq,r = σ̂4(2n)−1tr[(Aq + A′q)(Ar + A′r)] + σ̂2(n−1)a′qar (40)

+(n−1)(µ̂(4) − 3σ̂4)vecD(Aq)′vecD(Ar) (41)

+(n−1)µ̂(3)[a
′

qvecD(Ar) + a
′

rvecD(Aq)] (42)

with q, r = 1, 2, σ̂2 = u′sus/n as the estimate of the error variance obtained
from the spatially filtered residuals, and µ̂(3) and µ̂(4) are similarly the third and
fourth moments obtained from the spatially filtered residuals. Note that When
the diagonal elements of the weighting matrix A are zero, then vecD(A) = 0.
As pointed out earlier, this is the case for A2.

8.2.1 OLS estimation

As before, when no spatial lag or endogenous variables are included in the model
specification, aq,r = 0 and the expression for ψq,r simplifies greatly. Specifically,
the second term (in Equation 40) and the fourth term (Equation 42) equal
zero. Moreover, A1 is symmetric, so that A1 + A′1 = 2A1. Also, A2 =
(1/2)(W + W′), which we use instead of A2, and vecD(A2) = 0.

Consequently, we obtain the following results:

ψ11 = σ̂4(2n)−1tr[(2A1)(2A1)] + (n−1)(µ̂(4) − 3σ̂4)vecD(A1)′vecD(A1)
= 2σ̂4(n−1)tr[A1A1] + (n−1)(µ̂(4) − 3σ̂4)vecD(A1)′vecD(A1),

ψ12 = σ̂4(2n)−1tr[(2A1)(W + W′)]
= σ̂4(n−1)tr[A1(W + W′)],

ψ21 = ψ12,

ψ22 = σ̂4(2n)−1tr[(W + W′)(W + W′)]

8.2.2 GS2SLS Estimation

In the general case, the terms aq,r, q, r = 1, 2 need to be computed.. How-
ever, the properties of A1 and A2 can be exploited to simplify the expressions,
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as in the OLS case. The expressions for aq,r, q, r = 1, 2 are the same as in
Section 4.3.3, Equation 23:

ar = HPαr,

with P as in Equation 24:

P = (n−1H′H)−1(n−1H′Zs)[(n−1Z′sH)(n−1H′H)−1(n−1H′Zs)]−1

and H is the matrix of instruments. Zs is spatially filtered using λ1.
Th expressions for αq,r, q, r = 1, 2 are as in Section 4.3.2, using the spatially

filtered Z′s and us.
For α1, since A1 is symmetric, A1 + A′1 = 2A1, and the corresponding

expression can be written as:

α1 = −2n−1[Z′sA1us],

For α2, the corresponding expression is:

α2 = −n−1[Z′s(W + W′)us]

Taking all of this together, the elements of the weighting matrix are:

ψ11 = 2σ̂4(n−1)tr[A1A1] + σ̂2(n−1)a′1a1

+(n−1)(µ̂(4) − 3σ̂4)vecD(A1)′vecD(A1)

+2(n−1)µ̂(3)[a
′

1vecD(A1)]
ψ12 = σ̂4(n−1)tr[A1(W + W′)] + σ̂2(n−1)a′1a2

+(n−1)µ̂(3)[a
′

2vecD(A1)]
ψ21 = ψ12,

ψ22 = σ̂4(2n)−1tr[(W + W′)(W + W′)] + σ̂2(n−1)a′2a2

8.3 Step Two – Variance-Covariance Matrix

The minimization of argminλm′Ψ−1m yields a consistent and efficient estimate
for λ, say λ2. Although it is only necessary to use a consistent estimate for λ to
construct the appropriate variance-covariance matrix, it makes sense to use λ2

rather than λ1 in the expressions that follow. This also implies that spatially
filtered residuals us and the spatially filtered Zs need to be recomputed with the
new value for λ2. In addition, all the relevant parts of the variance-covariance
matrix that depend on λ need to be updated, such as the moments of the
spatially filtered residuals, i.e., σ̂2, µ̂(3) and µ̂(4), among others.

The general expression for the variance-covariance matrix is the same as for
the heteroskedastic case (Equation 28), which we repeat here for convenience:

Ω =
[
P′ 0
0 (J′Ψ−1J)−1J′Ψ−1

]
Ψo

[
P 0
0 Ψ−1J(J′Ψ−1J)−1

]
,
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where, as in the heteroskedastic case, the submatrix Ψo consists of four subma-
trices:

Ψo =
[
Ψδδ Ψδλ

Ψ′δλ Ψ

]
.

Again, as in the heteroskedastic case, an auxiliary 2 × 1 vector J is defined,
constructed as:

J = G
[

1
2λ

]
, (43)

where the elements of the 2 × 2 matrix G are from Equations 38 and 39.
The elements of Ψ are as in Section 8.2. Note that the new Zs and us are

needed to compute the α1,2, and the new Zs enters into the computation of P,
both necessary to calculate the terms a1,2 in the GS2SLS case. In addition, the
moments of the us residuals are required to compute the elements of Ψ for both
OLS and GS2SLS cases.

The other submatrices of Ψ are:

Ψδδ = (n−1)σ̂2H′H

Ψδλ = (n−1)σ̂2H′[a1,a2] + (n−1)µ̂(3)H′[vecD(A1),0]

Here, again, we need the residual moments and [a1,a2] using λ2. Note, that
since vecDA2 = 0 the last element in the expression for Ψδλ is a n × 1 vector
of zeros.

The corresponding elements of the variance-covariance matrix are then:

Ωδδ = σ̂2[Z′sH(H′H)−1H′Zs]−1

Ωδλ = P′ΨδλΨ−1J[J′Ψ−1J]−1

Ωλλ = [J′Ψ−1J]−1

Note that there may be a problem with the matrix Ωδλ in the standard
regression model. The classic result is that the variance-covariance matrix must
be block-diagonal between the model coefficients (δ) and the error parameters
(λ). In general, this will not be the case, since the second term in Ψδλ does not
disappear unless the diagonal elements of A1 are zero or the error distribution
is symmetric or normal (in which case µ(3) = 0). This is not the case for the
form of A1 used in Drukker et al. (2010, 2011). However, this is the case if we
use

A1 = W′W − diag(w′.iw.i).

The properties of the corresponding estimator need to be further investigated.
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