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1 Introduction

This paper illustrates some technical aspects of the implementation of general
methods of moments (GMM) estimation of the spatial error model in GeoDa-
Space and in the spreg module of PySAL (Rey and Anselin 2007, Anselin and
Rey 2012). The principles of this approach were originally presented in Kelejian
and Prucha (1998, 1999), and more recently generalized in a series of papers
by Kelejian and Prucha (2010), Arraiz et al. (2010) and Drukker et al. (2012)
(jointly referred to in what follows as K-P-D) . A similar but slightly different
theoretical framework is outlined in Lee (2007) and Lin and Lee (2010). A
detailed discussion of the methodological aspects of implementing GMM in this
context is also offered in Anselin (2011), which is a companion to the current
document.

GeoDaSpace is intended for the user who is somewhat familiar with the
methods, but prefers a point and click environment to the command line. As
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a consequence, the number of options available in GeoDaSpace has been delib-
erately constrained to those that are most common. In some cases, this means
that the default results produced by GeoDaSpace may differ slightly from those
produced by other computing environments, specifically the spatial economet-
rics routines in Stata (Drukker et al. 2011) and the sphet module in R (Piras
2010). We address these differences in some detail. Most importantly, we illus-
trate the flexibility and comprehensiveness of the options included in the PySAL
spreg module to implement different approaches that have been suggested in
the literature (some of these options are not available through the GeoDaSpace
GUI).

The description in this document pertains to GeoDaSpace alpha release ver-
sion 0.7.7, dated November 29, 2012. The code in GeoDaSpace is based on the
spreg module in PySAL which was originally released under Version 1.3 (Jan-
uary 2012). Functionality was extended in PySAL Version 1.4 (August 2012)
and in the current development version available from the google code reposi-
tory. An extensive guide to the use of the software and the various options that
can be specified (for both GeoDaSpace and PySAL) is provided in Anselin and
Rey (2013). We refer to that document for specific details.

The code base of the spreg module was completely refactored from earlier
working versions and rewritten to take advantage of sparse matrix routines and
other matrix algebra algorithms contained in the Python scipy and numpy mod-
ules. While these are pre-requisites for the installation of the PySAL library, the
necessary routines are pre-compiled and included in the GeoDaSpace binaries,
which are completely self-contained.1 Both GeoDaSpace and PySAL continue
to be under active development.

We also consider the Stata spivreg commands (as of Stata Version 11) and
the sphet package in R (version 1.1-12, published on CRAN on 2012-04-13).
With respect to the R package sphet, we consider both the current official release
as well as a development release that contains considerable more functionality
(specifically, an alpha release on R-Forge, revision 57, published on 2012-10-
30). These two versions are referred to in what follows as sphet1 and sphet2,
respectively.2

A detailed comparison of what is implemented in each of these packages is
shown in Table 1.

Given that the GMM framework is very general, several choices can be made
in actual implementations that all achieve consistency as an asymptotic result,

1GeoDaSpace is still in alpha and bug reports and other comments are actively requested
from users. Binaries of the program for Mac OSX and Windows can be downloaded from
https://geodacenter.asu.edu/software/downloads/geodaspace. Installation instructions
and the source code for PySAL (released under the open source BSD license) can be found at
http://pysal.org.

2It should be noted that sphet2 in particular is not an official release and may still undergo
changes that could affect the results of our comparisons. In earlier versions of our paper, we
used revision 56, published on 2012-07-22. There are significant changes between revision 57
and 56, particularly reflected in the results for models with endogenous variables, given in
Tables 3 and 6. The results for sphet2 revision 56 did not match the results for GeoDaSpace
and Stata. The results obtained with revision 57 do, as reflected in the Tables.
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Table 1: Comparison of Functionality: GeoDaSpace, Stata and R

Method G Stata sph11 sph22

Standard (OLS) • • • •
XXX heteroskedasticity (White)3 • • • •
XXX s.a. and heteroskedasticity (HAC)4 • • •
Standard (2SLS) • • • •
XXX endogenous var and het. (White)3 • • • •
XXX endogenous var., s.a. and het. (HAC)4 • • •
Spatial lag (S2SLS)5 • • • •
XXX het. (White)3 • • • •
XXX s.a. and het. (HAC)4 • • •
XXX endogenous var. • • •
XXX endog. var. and het. (White)3 • • •
XXX endog. var., s.a. and het. (HAC)4 • •
Spatial error (GM) (KP98/99)6 • • • •
XXX endogenous var. • •
Spatial error and lag (GM) (KP98/99)6 • • • •
XXX endog. var. • •
Spatial error (GMM)(KPD)7 • • •
XXX endogenous var. • • •
Spatial error and lag (GMM) (KPD)7 • • •
XXX endog. var. • • •
Spatial error with het. (GMM) (KP-Het)8 • • • •
XXX endog. var. and het. • • •
Spatial error and lag with het. (GMM) (KP-Het)8 • • • •
XXX endog. var. and het. • • •
1R packages spdep and sphet (v. 1.1-12, published on CRAN on 2012-04-13).
2R packages spdep and sphet (revision 57, published on R-Forge on 2012-10-30).
3based on White (1980)
4based on Kelejian and Prucha (2007)
5based on Anselin (1988)
6based on Kelejian and Prucha (1998, 1999)
7based on Drukker et al. (2012)
8based on Arraiz et al. (2010)

but yield different estimates (and/or estimated standard errors) in actual ap-
plications. To highlight potential differences that may result from such choices,
we compare the results among the different packages in detail, using a common
data set and model specification.

In the remainder of this paper, we first present the specification of the spatial
error model and outline the main steps in the estimation methods. This is
followed by a detailed discussion of six specific cases:

• spatial error model without heteroskedasticity

– exogenous variables only

– exogenous and endogenous variables
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– combo model with spatial lag and spatial error

• spatial error model with heteroskedasticity

– exogenous variables only

– exogenous and endogenous variables

– combo model with spatial lag and spatial error

We close with some concluding remarks.

1.1 Empirical Illustration

The empirical illustrations are based on the NAT sample data set available from
the GeoDa Center web site. These data can be downloaded from http://

geodacenter.org/downloads/data-files. Alternatively, they are contained
in the examples directory of the PySAL installation.

The NAT data set contains observations for 3085 continental U.S. counties (as
polygons) on homicides and a number of potential socio-economic determinants.
Details on the data and the context, as well as published empirical results can
be found in Messner et al. (2000), Baller et al. (2001) and Messner and Anselin
(2004).

The specific model specification included here is a regression of county homi-
cide rates for 1990 (HR90) on a constant, the resource deprivation index for 1990
(RD90) and the unemployment rate for 1990 (UE90). The unemployment rate is
considered as potentially endogenous and instrumented by the percent families
below the poverty line in 1989 (FP89). The spatial weights matrix is based on
queen contiguity between the counties, as contained in the NAT queen.gal file
in the sample data set (or the examples directory of the PySAL installation).

1.2 Replication

In order to facilitate the replication of our results (see, e.g., Koenker and Zeileis
2009), we include four files as digital appendices. These files contain the com-
mands to reproduce the results presented here using PySAL (GeoDaSpace), R
sphet and Stata spivreg.

The file GMM comparison.ipynb is an iPython “notebook” that contains the
Python commands to obtain the results in PySAL presented in the tables that
follow. The assumption (and also for the other appendices) is that the data
are in the current working directory. If not, the proper pathname needs to be
specified.

The R code to replicate the results for sphet is contained in two files. The
first, NAT R comp paper edit md.Rmd is an R “Markdown” file. It is easiest
to open in Rstudio with the Sweave option set to knitr. Alternatively, the
second file, NAT comp paper.ipynb is an iPython notebook that invokes the
Rmagic command to run R commands from within a Python environment.

Finally, the Stata commands to replicate the results are included in the
NAT comp Stata.do “ado” file, which can be readily executed from within Stata.
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2 Model and Methods

2.1 Model Specification

The most general model we consider is the so-called mixed regressive spatial
autoregressive model with a spatial autoregressive error term, or the so-called
SAR-SAR model.3 In what follows, we also refer to this specification as the
combo model.

Using the notation from Anselin (1988), the spatial lag part of the model is
expressed as:

y = ρWy + Xβ + u. (1)

The notation is standard, with y as a n × 1 vector of observations on the
dependent variable, W as a n × n spatial lag operator and Wy as the spatial
lag term with spatial autoregressive parameter ρ, X as an n × k matrix of
observations on exogenous explanatory variables with k× 1 coefficient vector β,
and a n× 1 vector of errors u.

The error vector u follows a spatial autoregressive process:

u = λWu + ε (2)

where λ is the spatial autoregressive parameter, and the innovations are poten-
tially heteroskedastic, such that E[ε2i ] = σ2

i . All other assumptions are standard.
In this paper, we focus on the estimation of the parameters of the error

model, more specifically the coefficient λ in Equation (2). We consider this
first with a classic assumption for the error variance-covariance matrix, where
E[ε2i ] = σ2. This is combined with three particular specifications for the main
regression model:

• the standard regression model, containing only exogenous variables

y = Xβ + u

• a regression model containing both exogenous and endogenous variables

y = Xβ + Yγ + u

where Y is a n × s matrix of observations on endogenous variables, with asso-
ciated coefficient vector γ.

• a combo model containing a spatial lag term (and possibly additional
endogenous variables, not considered here)

y = ρWy + Xβ + u,

The second set of cases considers the same three regression specifications,
but now in combination with a spatial autoregressive error term that has a
heteroskedastic disturbance, E[ε2i ] = σ2

i .

3Sometimes also referred to as SARAR model. We prefer the term SAR-SAR to stress
that model the substantive and the error specification are spatial autoregressive – SAR
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A general way to express the most encompassing model is as:

y = Zδ + u, (3)

where, in the most comprehensive case, Z = [X,Y,Wy] and the (k + s +
1) × 1 coefficient vector is rearranged as δ = [β′γ′ρ]′ (i.e., a column vector).
When endogenous variables are included (either a spatial lag, other endogenous
variables, or both), a n× p matrix of instruments H will be needed.

2.2 Estimation Strategy

The estimation strategy outlined by K-P-D consists of two major components.
One has to do with the estimation of the model coefficients using a feasible
generalized least squares approach, with a consistent estimate for λ in hand.
The second component deals with obtaining not only a consistent but also an
efficient estimate for λ.

2.2.1 Spatially Weighted Least Squares

The rationale behind spatially weighted estimation is that a simple transforma-
tion (the so-called spatial Cochrane-Orcutt transformation) removes the spatial
dependence from the error term in the regression equation:

(I − λW)y = (I − λW)Zδ + (I − λW)u

ys = Zsδ + ε,

using the notation from Equation (3), and with ys and Zs as filtered variables,
ys = y − λWy and Zs = Z− λWZ. Finally, ε is a potentially heteroskedastic,
but not spatially correlated innovation term.

Spatially weighted least squares (SWLS – Anselin 1988) or spatial Cochrane-
Orcutt estimation then consists of OLS or 2SLS applied to spatially filtered
variables. In the case where only exogenous variables are included in the model,
this boils down to:

β̂SWLS = (X′sXs)
−1X′sys, (4)

with Xs = X − λ̂WX, using a consistent estimate λ̂ for the autoregressive
parameter, and ys as before, but with a consistent estimate λ̂ for λ.

When both exogenous and endogenous variables are included in the model
(which encompasses both non-spatial endogenous variables as well as spatially
lagged dependent variables), we use the notation of Equation (3). In this in-
stance, the estimator is referred to as Generalized Spatial Two Stage Least
Squares (GS2SLS – Kelejian and Prucha 1998). It is obtained as:

δ̂GS2SLS = [Z′sH(H′H)−1H′Zs]
−1Z′sH(H′H)−1H′ys, (5)

where the notation is as before, using a consistent estimate λ̂ for λ and the
instrument matrix H. Note that, importantly, the instrument matrix is H and
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not Hs. In other words, the instruments are not subjected to a spatial filter
(i.e., a spatial Cochrane-Orcutt transformation).

The general theoretical result is that consistency is obtained as long as the
estimate for the nuisance parameter λ̂ is consistent. However, the efficiency of
the estimates for β (and δ) can be improved by using an optimal estimator for
λ. This is obtained through the GMM procedure. In addition, the GMM esti-
mator for λ suggested by Kelejian and Prucha (2010) remains consistent in the
presence of heteroskedasticity. The generalized moments estimator suggested
in the earlier work of Kelejian and Prucha (1998, 1999) is not consistent in the
presence of heteroskedasticity (and neither is the maximum likelihood estimator,
see Lin and Lee 2010).

2.2.2 Consistent and Efficient Estimation of λ

The estimation of the spatial autoregressive coefficient λ is obtained from the
solution of a system of moments equations, expressed as functions of the pa-
rameter and residuals. The residual vector, say u (in what follows, we do not
use separate notation to distinguish the residuals from the error terms, since
we always need residuals in practice) results from a set of initial consistent (but
not efficient) estimates for the model coefficients. For example, in a model with
only exogenous explanatory variables, this would be based on ordinary least
squares (OLS). In the presence of endogenous explanatory variables, two stage
least squares (2SLS) would be necessary.

The point of departure for K-P-D’s estimation procedure are two moment
conditions, expressed as functions of the innovation terms ε and their spatial
lags εL = Wε. They are:

n−1E[ε′LεL] = n−1tr[Wdiag[E(ε2i )]W
′] (6)

n−1E[ε′Lε] = 0, (7)

where εL is the spatially lagged innovation vector and tr stands for the matrix
trace operator. The main difference with the moment equations in Kelejian and
Prucha (1998, 1999) is that the innovation vector is allowed to be heteroskedastic
of general form, hence the inclusion of the term diag[E(ε2i )] in Equation 6. In
the absence of heteroskedasticity, the RHS of the first condition simplifies to
σ2n−1tr[WW′]. With σ2 replaced by E[(n−1)ε′ε], the first moment condition
then becomes:

n−1E[ε′LεL] = E[n−1ε′ε](n−1)tr[WW′] (8)

= n−1E[ε′(n−1)tr[WW′]Iε] (9)

K-P-D introduce a number of simplifying notations that allow the moment
conditions to be written in a very concise form. Specifically, they define

A1 = W′W − diag(w′.iw.i)

A2 = W,
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where w.i is the i-th column of the weights matrix W. Upon further inspection,
we see that each element i of the diagonal matrix diag(w′.iw.i) consists of the
sum of squares of the weights in the i-th column, i.e., the diagonal elements
of W′W. Note that therefore the diagonal elements and thus also the trace of
both matrices are zero. In Lee (2007), a slightly more general set of conditions is
considered, where matrices of the form A could have non-zero diagonal elements,
as long as the trace equals zero.

Using the new notation, the moment conditions become:

n−1E[ε′A1ε] = 0

n−1E[ε′A2ε] = 0

In order to operationalize these equations, the (unobservable) innovation
terms ε are replaced by their counterpart expressed as a function of regression
residuals. Since u = λWu + ε, it follows that ε = u − λWu = us, the spatially
filtered residuals. The operational form of the moment conditions is then:

n−1E[u′sA1us] = 0

n−1E[u′sA2us] = 0

The initial consistent estimate for λ is obtained by solving these moment
conditions.

The estimates for λ obtained from the nonlinear least squares are consistent,
but not efficient. Optimal estimates are found from a weighted nonlinear least
squares procedure, or, argminλm

′Ψ−1m, where Ψ is a weighting matrix. The
optimal weights correspond to the inverse variance of the moment conditions.

K-P-D show the general expression for the elements of the 2 × 2 matrix Ψ
to be of the form:

ψq,r = (2n)−1tr[(Aq + A′q)Σ(Ar + A′r)Σ] + n−1a′qΣar,

for q, r = 1, 2 and with Σ as a diagonal matrix with as elements (ui− λuLi
)2 =

u2si , i.e., the squares of the spatially filtered residuals. The second term in this
expression is quite complex, and we refer for further technical details to Kelejian
and Prucha (2010), Arraiz et al. (2010), Drukker et al. (2012), as well as Anselin
(2011). However, it is important to note that this second term becomes zero
when there are only exogenous explanatory variables in the model (i.e., when
OLS is applicable). The term derives from the expected value of a cross product
of expressions in the Z matrix and the error term u. Hence, when no endogenous
variables are included in Z, the expected value of this cross product amounts to
E[u] = 0.

3 The Spatial Error Model with Homoskedas-
ticity

The estimation of the spatial error model without heteroskedasticity uses Equa-
tion 8 for A1 instead of the general expression in Equation 6.
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Table 2: Spatial error model with exogenous variables and homoskedasticity

Variable GeoDaSpace PySAL1 sphet2 Stata PySAL2

CONSTANT 6.6762 6.6586 6.6762 6.9884 6.9884
0.3498) (0.3609) (0.3498) (0.3605) (0.3605)

RD90 3.9450 3.9417 3.9450 3.9945 3.9945
(0.1553) (0.1598) (0.1553) (0.1612) (0.1612)

UE90 -0.0770 -0.0745 -0.0770 -0.1240 -0.1240
(0.0471) (0.0479) (0.0471) (0.0490) (0.0490)

lambda 0.4150 0.4656 0.4149 0.4124 0.4124
(0.0192) (0.0187) (0.0194) (0.0194) (0.0194)

1PySAL with option A1=’het’
2PySAL using the code to match Stata estimates

3.1 Exogenous Variables Only

When all the explanatory variables in the model are exogenous, the estimation
boils down to SWLS, or OLS with spatially filtered variables. As pointed out in
Anselin (2011), the use of the expression for matrix A1 as suggested in Drukker
et al. (2012) yields a variance-covariance matrix for the coefficients that is not

block-diagonal between the estimates β̂ and λ̂, which thus violates a fundamental
result for FGLS (see, e.g., Breusch 1980). The block-diagonality is only obtained
for matrices A1,2 for which the diagonal consists of zeros, instead of only having
their trace equal zero. Therefore, Anselin (2011) suggests the use of A1 =
W′W − diag(W′W), which is an alternative GMM estimator. As a result, the

value for λ̂ using this approach will differ from programs that do not make this
adjustment.

To illustrate this point, we carry out the estimation of our example regression
model in GeoDaSpace, sphet2 (the K-P-D method is not included in sphet1)
and Stata, using the default settings in each. We also carry out two estimations
in PySAL with custom settings for the options. These results illustrate respec-
tively the estimates obtained with the alternative form for A1 and a replication
of the Stata results.

One reason for the different results in Stata is that it appears that estimation
for the coefficient estimates is implemented as 2SLS, even when no endogenous
variables are present in the model. This does not yield estimates equal to the
results of Equation 4. We can mimic the results in Stata by labeling the explana-
tory variables RD90 and UE90 as endogenous and using them as instruments as
well. Consequently, the constant term becomes the only truly exogenous vari-
able in this setup. Without spatially filtered variables, this would simply yield
the OLS results. More specifically, consider the standard result for 2SLS:

δ̂2SLS = [Z′H(H′H)−1H′Z]−1Z′H(H′H)−1H′y.

Substituting X for both Z and H yields:

δ̂2SLS = [X′X(X′X)−1X′X]−1X′X(X′X)−1X′y,

= [X′X]−1X′y,
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the OLS estimate. However, this result does not apply to the spatially weighted
least squares (or spatial Cochrane-Orcutt). Substituting X for H and the spa-
tially filtered Xs for Zs in Equation 5 yields:

δ̂GS2SLS = [X′sX(X′X)−1X′Xs]
−1X′sX(X′X)−1X′ys,

which does not reduce to SWLS, Equation 4. The main reason for this is
that the instruments are not spatially filtered, as pointed out before. Only if
the instruments would also be spatially filtered would the expression reduce to
SWLS, however this is not the case for GS2SLS. Hence, it would seem that the
estimate provided by Stata in this case is not the proper SWLS estimate.

The results are reported in Table 2. The default for GeoDaSpace essentially
matches the results for sphet2. However, these results differ somewhat from
what Stata yields. This is entirely due to the particular way in which spatially
weighted least squares are implemented in Stata for the OLS case. When the
option for A1 is set to het, the value for λ̂ is slightly higher due to the use of a
different set of moment equations, as mentioned above. When PySAL is tricked
to use the 2SLS routine for estimation, the results are identical to those from
Stata.

The Python code to obtain the PySAL results in Table 2 is given in Listing 1
(for the sake of readability, we have omitted the >>> Python prompt).

3.2 Exogenous and Endogenous Variables

When endogenous variables are included in addition to the exogenous variables,
estimation is based on GS2SLS, as in Equation 5. To illustrate this, we take
UE90 as the endogenous variable with FP89 as the instrument in our example
homicide rate regression. The results for four estimation procedures are listed
in Table 3. First is GeoDaSpace with the default for homoskedasiticy. This
completely matches the results for sphet2 in the third column and Stata in
column four of the Table (sphet1 does not include this functionality). Column
two shows the estimates obtained when the A1 option is set to ’het’. As we
have seen in the previous case, the estimate for λ is slightly different, which
results in slight differences for the β as well. The code for the two options in
PySAL is given in Listing 2.

3.3 Combo Model with Spatial Lag and Spatial Error

As the third case with homoskedasticity, we consider the combo model that
includes both a spatially lagged dependent variable and a spatial error term.
Several options are available for this case in GeoDaSpace and PySAL. In ad-
dition to the selection of A1 (in PySAL), the order of the spatial lag operator
need to be determined to construct the spatially lagged explanatory variables
(WX) as instruments for the spatial lag term. The default in GeoDaSpace (and
PySAL) is to use only the first order lag, whereas both sphet2 (sphet1 does not
include this estimator) and Stata use the second order spatial lag to construct
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Listing 1: PySAL code for error model – homoskedasticity – exogenous only

# preliminaries - import the needed modules

import numpy as np

import pysal as ps

# create the variables from the nat.dbf data set

db = ps.open(’nat.dbf’,’r’)

hr90 = db.by_col("HR90")

y = array(hr90)

y.shape = (len(hr90),1)

x_names = [’RD90’,’UE90’]

x = np.array([db.by_col(var) for var in x_names ]).T

# create the spatial weights as queen contiguity

w = ps.queen_from_shapefile("NAT.SHP")

# row -standardize the weights

w.transform = ’r’

# PySAL with GeoDaSpace default settings and results

reg1 = ps.spreg.GM_Error_Hom(y,x,w,name_y=’HR90’, \

name_x = x_names , name_w = ’nat_queen.gal’, \

name_ds=’NAT’)

print reg1.summary

# PySAL with A1 = ’het’

reg1a = ps.spreg.GM_Error_Hom(y,x,w,A1=’het’, \

name_y=’HR90’,name_x = x_names , \

name_w = ’nat_queen.gal’,name_ds=’NAT’)

print reg1a.summary

# PySAL base class to mimic Stata estimates

# Note: base class does not have a summary method ,

# so that results need to be printed explicitly

ones = np.ones(y.shape)

reg1c = ps.spreg.error_sp_hom.BaseGM_Endog_Error_Hom(y, \

ones ,yend=x, q=x, w=w, A1=’hom_sc ’)

print reg1c.betas

print map(np.sqrt , reg1c.vm.diagonal ())

the instruments. With the lag order set to two in GeoDaSpace (an option under
Instruments in the GeoDaSpace Preferences panel in the GeoDaSpace GUI),
its results are identical to those for sphet2 and Stata, as illustrated in Table 4.

The results in columns two and three of the Table illustrate the effect of the
various options on the estimates. In column two, only the first order spatial lags
are used to construct the instruments, which is the default in GeoDaSpace. The
estimates of both λ and ρ are affected, but only slightly. The effect of taking
A1 as ’het’ shown in column three seems to be more pronounced, especially
of the estimate for λ. The code to implement the various options in PySAL is
given in Listing 3.
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Table 3: Spatial error model with endogenous variables and homoskedasticity

Variable GeoDaSpace PySAL1 sphet2 Stata

CONSTANT 21.0606 21.0288 21.0606 21.0606
(1.5385) (1.5362) (1.5385) (1.5385)

RD90 8.2420 8.2376 8.2420 8.2420
(0.4888) (0.4881) (0.4888) (0.4888)

UE902 -2.2438 -2.2392 -2.2438 -2.2438
(0.2290) (0.2286) (0.2290) (0.2290)

lambda 0.4944 0.4934 0.4944 0.4944
(0.0217) (0.0216) (0.0217) (0.0217)

1PySAL with option A1=’het’
2UE90 instrumented by FP89

Listing 2: PySAL code for error model – homoskedasticity – endogenous

# y, x and w created as before , db as open data set

# extract exogenous , endogenous from x

xex = x[:,0]

xex.shape = (len(hr90),1)

yend = x[:,1]

yend.shape = (len(hr90),1)

# create the instrument from the nat.dbf data set

fp89 = db.by_col("FP89")

q = array(fp89)

q.shape = (len(fp89),1)

# PySAL with GeoDaSpace default settings and results

reg2 = ps.spreg.GM_Endog_Error_Hom(y,xex ,yend ,\

q,w,name_y="HR90",name_x =["RD90"],\

name_yend =["UE90"],name_q =["FP89"],\

name_w="natqueen.gal",name_ds="nat.shp")

print reg2.summary

# PySAL with A1 = ’het’

reg2a = ps.spreg.GM_Endog_Error_Hom(y,xex ,yend ,\

q,w,A1=’het’,name_y="HR90",name_x =["RD90"],\

name_yend =["UE90"],name_q =["FP89"],\

name_w="natqueen.gal",name_ds="nat.shp")

print reg2a.summary
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Table 4: Combo model with homoskedasticity

Variable GeoDaSpace1 PySAL2 PySAL3 sphet2 Stata

CONSTANT 6.9362 6.9530 6.9406 6.9362 6.9362
(0.5120) (0.5161) (0.5327) (0.5120) (0.5120)

RD90 4.0061 4.0089 4.0074 4.0061 4.0061
(0.1764) (0.1762) (0.1758) (0.1764) (0.1764)

UE90 -0.0978 -0.0854 -0.0957 -0.0978 -0.0978
(0.0481) (0.0483) (0.0490) (0.0481) (0.0481)

W HR90 -0.0190 -0.0356 -0.0220 -0.0190 -0.0190
(0.0513) (0.0519) (0.0543) (0.0513) (0.0513)

lambda 0.4364 0.4521 0.5098 0.4364 0.4364
(0.0421) (0.0415) (0.0376) (0.0421) (0.0421)

1GeoDaSpace with lags = 2
2PySAL with w lags = 1 (GeoDaSpace default)
3PySAL with option A1=’het’ and w lags = 2

Listing 3: PySAL code for combo model – homoskedasticity

# y, x and w created as for homoskedastic - exogenous case

# PySAL with w_lags = 2 and A1 = hom_sc (default)

reg3 = ps.spreg.GM_Combo_Hom(y,x,w=w,w_lags =2,\

name_y=’HR90’,name_x = x_names , \

name_w = ’nat_queen.gal’,name_ds=’NAT’)

print reg3.summary

# PySAL with GeoDaSpace default settings (w_lags = 1)

rreg3a = ps.spreg.GM_Combo_Hom(y,x,w=w,name_y=’HR90’,\

name_x = x_names , name_w = ’nat_queen.gal’,\

name_ds=’NAT’)

print reg3a.summary

# PySAL with A1 = ’het’ and w_lags = 2

reg3b = ps.spreg.GM_Combo_Hom(y,x,w=w,w_lags =2,\

A1=’het’,name_y=’HR90’,name_x = x_names , \

name_w = ’nat_queen.gal’,name_ds=’NAT’)

print reg3b.summary
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4 The Spatial Error Model with Heteroskedas-
ticity

4.1 Exogenous Variables Only

When all the explanatory variables are exogenous, we encounter a similar sit-
uation for the Stata output as in the homoskedastic case. Again, Stata uses a
2SLS estimation routine for the OLS results, which yields different estimates
from GeoDaSpace and sphet.

The results are given in Table 5. The estimates for GeoDaSpace and sphet2

are virtually identical, with a slight difference in the value for λ and most of the
standard errors identical (with slight differences for some). However, the results
for the older sphet1 differ from those for sphet2. We can almost replicate the
results for sphet1 by setting the option step1c = True in PySAL, as shown
in the second column. This refers to a slight difference in the estimation steps
between Arraiz et al. (2010) and Drukker et al. (2012). In the former, the initial
consistent estimation from the unweighted optimization of the moment equa-
tions is followed by a second efficient estimation before moving to the spatially
weighted least squares. In the subsequent paper by Drukker et al. (2012), this
additional step is skipped. The default in GeoDaSpace (and PySAL) is to follow
the latter approach, but the former can be invoked with the step1c option.

The estimated regression coefficients are identical between this call to PySAL
and sphet1, but there is a slight difference in the estimate for λ and in the
coefficient standard errors.

As before, the only way to replicate the results from Stata is to use the
2SLS estimation procedure as shown before. The estimates are given in the last
column of the Table.

The code to carry out these procedures in PySAL is given in Listing 4.

Table 5: Spatial error model with exogenous variables and heteroskedasticity

Variable G-Space PySAL1 sphet1 sphet2 Stata PySAL2

CONSTANT 6.6586 6.5782 6.5782 6.6586 6.9777 6.9777
(0.4749) (0.4749) (0.4594) (0.4745) (0.4622) (0.4622)

RD90 3.9417 3.9275 3.9275 3.9417 3.9911 3.9911
(0.2602) (0.2604) (0.2316) (0.2599) (0.2326) (0.2325)

UE90 -0.0745 -0.0630 -0.0630 -0.0745 -0.1225 -0.1225
(0.0611) (0.0611) (0.0589) (0.0611) (0.0592) (0.0592)

lambda 0.4753 0.4763 0.4756 0.4740 0.4721 0.4721
(0.0235) (0.0235) (0.0237) (0.0237) (0.0236) (0.0236)

1PySAL with option step1c = True
2PySAL using the code to match Stata estimates
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Listing 4: PySAL code for error model – heteroskedasticity – exogenous only

# all arrays and weights objects as before

# PySAL with GeoDaSpace default settings and results

reg4 = ps.spreg.GM_Error_Het(y,x,w,name_y="HR90" ,\

name_x=x_names ,name_w="natqueen.gal" ,\

name_ds="nat.shp")

print reg4.summary

# PySAL with step1c = True

reg4a = ps.spreg.GM_Error_Het(y,x,w,step1c=True ,\

name_y="HR90",name_x=x_names ,\

name_w="natqueen.gal",name_ds="nat.shp")

print reg4a.summary

# PySAL to mimic Stata output

reg4b = ps.spreg.error_sp_het.BaseGM_Endog_Error_Het(y,ones ,\

yend=x, q=x, w=w)

print reg4b.betas

print map(np.sqrt , reg4b.vm.diagonal ())

4.2 Exogenous and Endogenous Variables

In the presence of endogenous variables, the heteroskedastic case proceeds in
the same fashion as the homoskedastic one, using GS2SLS.

We use the same example as before, with UE90 as the endogenous variable
and FP89 as the instrument. The results for four estimation procedures are
listed in Table 6.

The first columnn shows the results for GeoDaSpace (and PySAL) with all
the default options. This completely matches the results for sphet2 (sphet1
does not include this functionality) and Stata in columns three and four of the
Table.

Column two shows the estimates obtained when the step1c option is set to
True. The corresponding estimate for λ is slightly different, which results in
slight differences for the β as well.

The code for the two options in PySAL is given in Listing 5.

4.3 Combo Model with Spatial Lag and Spatial Error

The final specification we consider pertains to the combo model with het-
eroskedasticity, listed in Table 7. As in the homoskedastic case, an important
option is the order of the spatial lag for the exogenous variables that is used to
construct the instruments. The default for GeoDaSpace (and PySAL) is first
order only, whereas the default in sphet2 and Stata is second order. A second
potential difference in the estimates is whether the additional step (step1c)
from Arraiz et al. (2010) in included. This is controlled by setting the step1c

= True option in PySAL (the default is False).
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Table 6: Spatial error model with endogenous variables and heteroskedasticity

Variable GeoDaSpace PySAL1 sphet2 Stata

CONSTANT 21.0288 21.2384 21.0288 21.0288
(2.5629) (2.5165) (2.5629) (2.5629)

RD90 8.2376 8.2662 8.2376 8.2376
(0.7817) (0.7637) (0.7817) (0.7817)

UE902 -2.2392 -2.2695 -2.2392 -2.2392
(0.3902) (0.3830) (0.3902) (0.3902)

lambda 0.4667 0.4298 0.4667 0.4667
(0.0298) (0.0322) (0.0298) (0.0298)

1PySAL with option step1c = True
2UE90 instrumented by FP89

Listing 5: PySAL code for error model – heteroskedasticity – endogenous

# all arrays and weights object as before

# PySAL with GeoDaSpace default settings and results

reg5 = ps.spreg.GM_Endog_Error_Het(y,xex ,yend ,q,w,\

name_y="HR90",name_x =["RD90"],\

name_yend =["UE90"],name_q =["FP89"],\

name_w="natqueen.gal",name_ds="nat.shp")

print reg5.summary

# PySAL with step1c = True

reg5a = ps.spreg.GM_Endog_Error_Het(y,xex ,yend ,q,w,\

step1c=True ,name_y="HR90",name_x =["RD90"],\

name_yend =["UE90"],name_q =["FP89"],\

name_w="natqueen.gal",name_ds="nat.shp")

print reg5a.summary

As shown in the first and last two columns of Table 7, the results for Geo-
DaSpace/PySAL with the lag option set to order two completely match the
estimates obtained by sphet2 and Stata. When only the first order lag is used
(the default in GeoDaSpace/PySAL), the estimate for λ is somewhat higher,
with associated minor changes in the β estimates. Using the additional esti-
mation step (with second order lags) yields results in PySAL (column 3) that
approach those from sphet1 (column 4), with the highest value for λ of all the
options.

The code for the various settings in PySAL is given in Listing 6.
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Table 7: Combo model with heteroskedasticity

Variable G-Space1 PySAL2 PySAL3 sphet1 sphet2 Stata

CONSTANT 6.9406 6.9452 7.0209 7.0196 6.9406 6.9406
(0.8600) (0.8722) (0.8836) (0.8251) (0.8600) (0.8600)

RD90 4.0074 4.0063 4.0054 4.0057 4.0074 4.0074
(0.3261) (0.3242) (0.3198) (0.3212) (0.3261) (0.3261)

UE90 -0.0957 -0.0830 -0.0640 -0.0643 -0.0957 -0.0957
(0.0664) (0.0671) (0.0677) (0.0640) (0.0664) (0.0664)

W HR90 -0.0220 -0.0370 -0.0709 -0.0702 -0.0220 -0.0220
(0.0876) (0.0905) (0.0918) (0.0839) (0.0876) (0.0876)

lambda 0.5584 0.5961 0.6406 0.6399 0.5584 0.5584
(0.0507) (0.0500) (0.0480) (0.0460) (0.0507) (0.0507)

1GeoDaSpace with lags = 2
2PySAL with w lags = 1 (GeoDaSpace default)
3PySAL with option step1c = True and w lags = 2

Listing 6: PySAL code for combo model – heteroskedasticity

# all arrays and weights object as before

# PySAL with GeoDaSpace settings for w_lags = 2

reg6 = ps.spreg.GM_Combo_Het(y,x,w=w,w_lags =2,\

name_y=’HR90’,name_x = x_names , \

name_w = ’nat_queen.gal’,name_ds=’NAT’)

print reg6.summary

# PySAL with w_lags = 1 (default)

reg6a = ps.spreg.GM_Combo_Het(y,x,w=w,\

name_y=’HR90’,name_x = x_names , \

name_w = ’nat_queen.gal’,name_ds=’NAT’)

print reg6a.summary

# PySAL with w_lags = 2 and step1c = True

reg6c = ps.spreg.GM_Combo_Het(y,x,w=w,w_lags =2,\

step1c=True ,name_y=’HR90’,name_x = x_names , \

name_w = ’nat_queen.gal’,name_ds=’NAT’)

print reg6c.summary

5 Concluding Remarks

The GMM estimators proposed by K-P-D constitute an important contribution
to theoretical and applied econometrics. Heteroskedasticity is the rule rather
than the exception in empirical cross-sectional work. As a result, estimates for
the error spatial autoregressive coefficient that are robust to heteroskedasticity
are extremely useful.

The proposed estimators are asymptotic in nature. Moreover, the suggested
framework is very general, such that several alternative formulations for the
moment equations may yield asymptotically equivalent results. In practice,
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these alternatives will tend to lead to numerical differences in finite samples. In
addition, in computational practice, the optimization of the moment equation
conditions may result in minor differences due to the particular optimizer that
is applied.

In this paper, we have illustrated how choices made in the implementation of
the estimation routines may yield (slightly) different coefficient estimates. The
differences are rather subtle and tend to occur at the third decimal level (in
some instances at the second decimal). We have shown how the comprehensive
implementation in the PySAL spreg routines provides the flexibility to select
options that allow a range of estimation approaches. By doing so, we have
illustrated how PySAL can replicate both the results obtained in R and Stata
as well as assess the sensitivity of those results to the choices made in the
software implementation. We confirm the power of open source software where
the “documentation is in the code,” which allows researchers to know exactly
which option has been selected, rather than the all too common black box
approach used in proprietary commercial software (see also Yalta and Yalta
2010, for a similar argument). We also provide full replicability of our results
in the form of scripts to carry out the estimation in all the three software
environments covered.

From a methodological perspective, it would seem that further investigation
of the relative performance of the various asymptotically equivalent approaches
is warranted.
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