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Abstract

This paper deals with the extension of internet-based geographic in-
formation systems with functionality for exploratory spatial data analysis
(esda). The specific focus is on methods to identify and visualize outliers
in maps for rates or proportions. Three sets of methods are included: ex-
treme value maps, smoothed rate maps and the Moran scatterplot. The
implementation is carried out by means of a collection of Java classes
to extend the Geotools open source mapping software toolkit. The web
based spatial analysis tools are illustrated with applications to the study
of homicide rates and cancer rates in U.S. counties.
Key Words: internet GIS, exploratory spatial data analysis, spatial out-
liers, smoothing, spatial autocorrelation, Geotools.

1 Introduction

For close to fifteen years now, there have been substantial efforts to extend Ge-
ographic Information Systems with functionality to carry out spatial analysis
in general, and spatial statistical analysis in particular. Early work tended to
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support was provided by grant RO1 CA 95949-01 from the National Cancer Institute. Special
thanks to Dr. Eugene J. Lengerich of the Pennsylvania State Cancer Institute for providing
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emphasize objectives for the integration of GIS and spatial analysis, outline re-
quired functionality and describe overall frameworks, as exemplified in, among
others, Goodchild (1987), Anselin and Getis (1992), Goodchild et al. (1992),
Fotheringham and Rogerson (1993) and Fischer and Nijkamp (1993). More re-
cently, this has translated into a range of software implementations of linked,
embedded and otherwise integrated modules extending “traditional” GIS func-
tions with data exploration, visualization and analysis tools.1

The phenomenal growth of the world wide web has resulted in the devel-
opment of so-called internet GIS, ranging from the delivery of static maps to
interactive distributed computing frameworks. Most of the emphasis in internet
GIS to date has arguably been on map delivery, cartographic presentation and
providing access to a variety of distributed geographic information (see, e.g.,
Plewe 1997, Peng 1999, Kähkonen et al. 1999, Jankowski et al. 2001, Kraak and
Brown 2001, Tsou and Buttenfield 2002).

Increasingly, more specialized spatial analytical capabilities are becoming
implemented in an internet GIS environment as well. Some examples are virtual
reality modeling (Huang and Lin 1999, 2002), hydrological modeling (Huang and
Worboys 2001), as well as exploratory data analysis (Herzog 1998, Andrienko
et al. 1999, Takatsuka and Gahegan 2001, 2002).

Our paper deals with efforts to incorporate methods for exploratory spatial
data analysis in an internet GIS. The original motivation stemmed from the need
to develop an interactive front end to the Atlas of US Homicides of the National
Consortium on Violence Research (Messner et al. 2000), which would include
user-friendly ways to carry out a limited set of spatial data manipulations. The
objective was to provide this functionality through a standard web browser, so
that the user would not need to have access to a GIS or specialized spatial data
analysis software. Our focus is therefore on techniques to detect and visualize
outliers in rate maps, to smooth these maps to correct for potential spurious
inference, and to analyze and visualize patterns of spatial autocorrelation. Such
methods are still largely absent in mainstream statistical and GIS software. A
much more ambitious effort to provide ESDA and other spatial data analysis
methods on the desktop is reflected in CSISS’ GeoDa software project (Anselin
2003).2

In this paper, we first provide a brief review of the methods included in our
approach, followed by an outline of the architecture of the software implemen-
tation. We illustrate the analytical tools with an application to the study of
spatial pattens in county homicide rates around St. Louis, MO, and of colon
cancer diagnoses in Appalachia. We close with some concluding comments.

1For some recent reviews of the relevant literature, see, among others, Anselin (2000),
Anselin et al. (2002), Symanzik et al. (2000), Zhang and Griffith (2000), Haining et al. (2000),
and Gahegan et al. (2002).

2GeoDa can be downloaded from http://sal.agecon.uiuc.edu/csiss/geoda.html.
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2 Methods

The techniques included in our analytical toolkit are aimed at the exploration of
outliers in maps depicting rates or proportions, such as homicide rates, cancer
incidence rates, mortality rates, etc. Three broad classes of methods are consid-
ered: outlier maps, smoothing procedures and spatial autocorrelation analysis.
These methods are not new, and more extensive reviews and background can be
found in, among others, Anselin (1994, 1998, 1999), Bailey and Gatrell (1995),
Fotheringham et al. (2000), and Lawson et al. (1999). While familiar in the spa-
tial analysis literature, they are typically not part of the standard functionality
of a commercial statistical package or GIS, let alone included in an internet GIS.

The most basic set of techniques includes simple enhancements to standard
choropleth maps in order to highlight extreme values. The maps are obtained by
classifying the data in a particular way or by comparing the data to a reference
value, as implemented in percentile maps, box maps and excess rate maps. A
second set of methods encompasses smoothing procedures, in order to obtain
“more accurate” estimates of the underlying risk than produced by the raw rate
maps. It is well known that when rates are estimated from unequal populations
(such as widely varying county populations), the results are inherently unstable.
Smoothing techniques address this issue by correcting (“shrinking”) the raw
rates while taking into account additional information (such as the indication
provided by a reference rate). Two specific techniques are implemented here,
the Empirical Bayes (EB) smoother and a spatial rate smoother. A final set
of methods addresses the visualization of spatial autocorrelation by means of a
Moran Scatterplot. A brief review of some technical issues is provided next, for
a more in-depth discussion we refer to the literature.

2.1 Outlier Maps

Underlying any choropleth map is a sorting of the observed values into bins,
similar to the classification used to construct a histogram. Each bin then cor-
responds to a color and all observations (locations) in the same bin are colored
identically on the map.

In order to highlight extreme values in a distribution, and downplay the
values around the median, a percentile map uses six categories for the clas-
sification of ranked observations: 0-1%, 1-10%, 10-50%, 50-90%, 90-99% and
99-100%. The lowest and highest percentile are extreme values, although this
is only a simple ranking and does not imply that these observations are neces-
sarily extreme relative to the rest of the distribution. In other words, they are
candidates to be classified as outliers, but may not be outliers in a strict sense.

A more rigorous assessment of the characteristics of the complete distribu-
tion of the attributes is obtained in a box map (see, e.g., Anselin 1998, 1999),
a specialized form of a quartile map. Again, there are six categories. In ad-
dition to four categories corresponding to the four quartiles, an extra category
is reserved at both the high and low end for those observations that can be
classified as outliers, following the same definition as applied in the familiar
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box plot, also known as a box and whisker plot.3 Consequently, when there are
such outliers, the first and last quartile no longer contain exactly one fourth
of the observations. The map shows the location of the outliers in the value
distribution.

These first two types of maps are generic, in the sense that they apply to
any kind of data. The excess rate (or, relative risk, standardized risk) maps
are specific to rate or proportion data. Proportions are ratios of events (such as
homicides, disease incidence or deaths) over a population at risk (the population
in an areal unit, or, the population in a specific age/sex group in an areal unit).
With Ei as the count of events, and Pi as the population at risk in area i, the
“raw rate” pi is the simple proportion:

pi = (Ei/Pi). (1)

Often, the result is scaled to yield a more meaningful number, such as homicides
or deaths per ten thousand, per hundred thousand, etc. (typically, different
disciplines have their own conventions about what is a “standard” base value).

A measure of relative risk is obtained by comparing the rate at each location
to the overall mean, computed as the ratio of all the events in the study region
over the total population of the study region, or:

θ̂ =
∑N

i=1 Ei∑N
i=1 Pi

, (2)

where N is the number of areal units in the study region. Note that this is not
the same as the average of the individual pi. Using the average risk and the
population for each areal unit, an estimate of the expected number of events can
be computed as

Êi = θ̂ × Pi. (3)

The ratio of actual to expected counts of events (or, their difference) is a
commonly used indicator of the extent to which a location exceeds (or is below)
what would be observed if the average risk applied to that location.4 In an
excess rate map, this is symbolized as a choropleth map. The map as such is
purely for visualization and does not indicate whether of not the observed excess
is “significant” in a statistical sense.

2.2 Rate Smoothing

Rate smoothing or shrinkage is the procedure used to statistically adjust the
estimate for the underlying risk in a given spatial unit, by borrowing strength
from the information provided by the other spatial units. The motivation for

3A box plot shows the ranking of observations by value and classified into four quartiles.
Observations with values that are larger than (less than) the value correspoding to the 75th
percentile (25th percentile) + (−) 1.5 times the interquartile range are labeled outliers. See
also Cleveland (1993) for an extensive discussion of data visualization issues.

4See the collection of papers in Lawson et al. (1999) for further discussion and several
examples.
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this approach comes from Bayesian statistics, where the estimate obtained from
the data (the likelihood) is combined with prior information to derive a posterior
distribution. This process is commonly referred to as borrowing strength, since
it strengthens the original estimate. In practice, a wide range of approaches
has been suggested that differ in the way additional information is incorporated
into the estimation process. It is important to recognize that no method is
best, and each will tend to result in (slightly) different adjustments to the raw
rate estimate. The motivation for considering different smoothing techniques is
to assess the degree of stability of the results. When two methods yield very
different observations as “outliers,” additional investigation may be warranted.
This contrasts with the situation where the same observation is consistently
identified as an outlier across several methods.

An Empirical Bayes smoother uses Bayesian principles to guide the adjust-
ment of the raw rate estimate by taking into account information in the rest of
the sample. The principle is referred to as shrinkage, in the sense that the raw
rate is moved (shrunk) towards an overall mean, as an inverse function of the
inherent variance.5

In other words, if a raw rate estimate has a small variance (i.e., is based on a
large population at risk), then it will remain essentially unchanged. In contrast,
if a raw rate has a large variance (i.e., is based on a small population at risk, as in
small area estimation), then it will be “shrunk” towards the overall mean. From
a Bayesian perspective, the overall mean is a prior, which is conceptualized as
a random variable with its own (“prior”) distribution.

Assume this prior distribution is characterized by a mean θ and variance
φ. The Bayesian estimate for the underlying risk at i then becomes a weighted
average of the raw rate pi, given in Equation (1), and the “prior,” with weights
inversely related to their variance. This can be shown to yield:

π̂i = wipi + (1− wi)θ, (4)

with
wi =

φ

φ + (θ/Pi)
. (5)

Note that when the population at risk is large, the second term in the denomi-
nator of (5) becomes near zero, and wi → 1, giving all the weight in (4) to the
raw rate estimate. As Pi gets smaller, more and more weight is given to the
second term in (4). The Empirical Bayes approach (EB) consists of estimating
the moments of the prior distribution from the data, rather than taking them
as a “prior” in a pure sense (for technical details, see, e.g., Marshall 1991).

An important practical issue is the choice of the reference set from which
the estimate for θ is computed. For example, one could argue that in a study
of homicides in rural Minnesota counties (characterized by very low homicide
counts, but also by small populations, such that a single homicide may cause an
elevated rate), the proper prior would not necessarily be the national homicide

5The original reference is Clayton and Kaldor (1987), details are also given in Bailey and
Gatrell (1995), pp. 303-308.
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rate, but rather an average calculated for the Great Plains “region.” In any
application of smoothing, it is important to consider the sensitivity of the results
(in terms of how locations are classified as being outliers) to the choice of this
reference region. One of the characteristics of the tools we implement is to make
this straightforward for the user. Again, it is important to realize that there is
no best reference region. Rather, in an exploratory exercise, an assessment of
sensitivity of the identified “patterns” to the choice of technique is an important
consideration.

A spatial rate smoother (e.g., Kafadar 1996) is based on the notion of a
spatial moving average or window average. Instead of computing an estimate
as the raw rate for each individual spatial unit, it is computed for that unit
together with a set of “reference” neighbors, Si.6 This contrasts with the EB
technique, where the smoothed rate is an average of the raw rate and some
separately computed reference estimate.

An important practical consideration in the implementation of a spatial
smoother is the size of the “window,” or, the selection of the relevant neigh-
bors. As with the EB method, there is no best solution, but rather, interest
focuses on the sensitivity of the conclusions to the choice of the window. As a
general rule, the larger the window (the more neighbors), the more of the origi-
nal variability will be removed. In the extreme, if the spatial window includes all
the observations in the data set, the smoothed rate will be the same everywhere.
In practice, neighbors can be defined in similar fashion to the specification of
spatial weights in spatial autocorrelation analysis. In our implementation, we
use simple contiguity (common borders) to define the neighbors. The smoothed
rate becomes:

π̂i =
Ei +

∑Ji

j=1 Ej

Pi +
∑Ji

j=1 Pj

, (6)

where j ∈ Si are the neighbors for i.7 The spatially smoothed rate map is
then a choropleth map based on the ranking of the smoothed rate values. It
emphasizes broader regional trends and removes some of the spatial detail from
the original map.

2.3 Visualizing Spatial Autocorrelation

The final component in our analytical framework is the visualization of spatial
autocorrelation by means of a Moran Scatterplot (Anselin 1995, 1996). This is
a specialized scatterplot with the spatially lagged transformation of a variable
on the y-axis and the original variable on the x-axis, after standardizing the
variable such that the mean is zero and variance one. With such a standardized

6A slightly different notion of spatial rate smoother is based on the median rate in the
moving window, as used by Wall and Devine (2000).

7The total number of neighbors for each unit, Ji is not necessarily constant and depends
on the contiguity structure.
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variable as zi, the spatial lag becomes

[Wz]i =
∑

j

wijzj , (7)

where wij are elements of a row-standardized spatial weights matrix.8 For the
zi and with a row-standardized spatial weights matrix, Moran’s I coefficient of
spatial autocorrelation is:

I =

∑
i

∑
j ziwijzj∑
i z2

i

, (8)

or, the slope of the regression line of the spatially lagged variate [Wz]i on the
original variate zi (see Anselin 1996).

Since the variable zi is standardized, the units on the axes of the scatter-
plot correspond to one standard deviation. Hence, points further than two
standard deviations from the center (the mean) can be informally character-
ized as “outliers.” However, the main contribution of the Moran scatterplot
is the classification of the type of spatial autocorrelation into two categories,
referred to as spatial clusters and spatial outliers. As explained in more de-
tail in Anselin (1996), each quadrant of the Moran scatterplot corresponds to a
different type of spatial correlation. The lower-left and upper-right quadrants
indicate positive spatial autocorrelation, respectively of low values surrounded
by neighboring low values, or high values surrounded by neighboring high val-
ues. Consequently, these are referred to as clusters. In contrast, the upper-left
and lower-right quadrants suggest negative spatial autocorrelation, respectively
of low values surrounded by neighboring high values, or high values surrounded
by neighboring low values. These are therefore referred to as spatial outliers.
It is important to note that the scatterplot provides the classification, but does
not indicate “significance.” The latter is obtained by applying a Local Moran
(LISA) test, as shown in Anselin (1995).

The scatterplot also provides a visual indication of the sign and strength of
spatial autocorrelation in the form of the slope of the regression line. Finally,
the scatterplot allows for an informal investigation of the leverage (influence) of
specific observations (locations) on the autocorrelation measure.9

8The square spatial weights matrix W has a row/column corresponding to each observation.
For each row (observation) it indicates by a non-zero value those columns (observations)
that are “neighbors.” In our implementation, we only consider neighbors defined by simple
contiguity. The weights matrix is row-standardized such that the elements of each row sum
to one.

9In the latest incarnation of our tool, developed after the first version of the paper was
completed, a variance stabilization method due to Assunção and Reis (1999) is included as
an option. This corrects the Moran’s I statistic for potentially spurious inference due to the
intrinsic variance instability of rates, similar to the EB smoother discussed in Section 2.2.
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3 Architecture

Our point of departure for enabling an internet GIS with spatial analytical
capability is the collection of Java classes contained in the Geotools open source
mapping toolkit, originally developed at the University of Leeds.10 Geotools
implements choropleth mapping, cartograms, linking, zooming, panning and
other standard functions of an internet GIS through a Java applet embedded
in a standard html web page. The applet executes on the client’s machine in
the browser (provided the browser is Java-enabled). The toolkit is open source,
which allows for easy customization and complete access to all the code.11

3.1 Basic Geotools Architecture

In order to put our extensions into proper perspective, Figure 1 illustrates the
basic logic of the standard Geotools internet mapping implementation. The
main input is a file in ESRI’s shape file format, from which an attribute (vari-
able) is extracted for mapping. The attibute values are stored in Geotools’
so-called GeoData object (data structure), which is essentially a two column
matrix, with each row containing the value of a key (matching the ID of a cor-
responding feature in the shape file) and the attribute value (either numeric
or character). Both the file name of the shape file as well as the name of the
variable to be mapped are passed as parameters to the Java applet, but once
the main applet is set up, they can no longer be changed.

Once the GeoData object is constructed, it is passed to the Classification-
Shader class, which can be thought of as a central data dispatch center. The
ClassificationShader moves the original data to the appropriate classification
classes, such as Quantile.class, or EqualInterval.class. These classes implement
the sorting and classification necessary to group the original data into bins for
use in a thematic map. The result of the classification is passed back to the
ClassificationShader, which transfers it to the main applet for mapping. This
is both directly, for the map itself, and indirectly, via the specialized classes re-
quired to construct the legend (e.g., the Key.class and the DiscreteShader.class).
The ClassificationShader also manages a rudimentary user interface (Popup di-
alog) to select the type of classification for the choropleth map, the number of
intervals, start and end colors for a color ramp, etc. (see Figure 3).

For our purposes, there were several limitations to the standard Geotools ar-
chitecture. Foremost among these was the constraint that only a single variable
could be handled. All manipulations within the Geotools classes (mapping, clas-
sification, linking) are limited to this single variable, i.e., the values contained
in the GeoData object. In our application, the smoothing functions require at

10http://www.geotools.org. Our implementation is based on Geotools Version 0.8.0. More
recently, Version 2.0 of Geotools has been released in alpha testing stage. The architecture
of this new version is completely different and our framework cannot be ported “as is” to the
new architecture. At the time of this writing, there are still very few working applications
that use the new architecture.

11An up to date source tree for the Geotools project is maintained in Sourceforge, at
http://www.sourceforge.net/projects/geotools
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Set Up Fundamental Variables
Construct GeoData
Organize Outlook
Draw Map

Main Applet

ClassificationShader

PopUp Dialog
Distribute GeoData
Distribute Classified GeoData

Classification Classes

Classify GeoData

Legend Draw Classes

Original GeoData
Classified GeoData

Figure 1: Basic Geotools Architecture (original).

least two variables, i.e., an event count (numerator) and population at risk (de-
nominator), and also need to allow for the computation of a new variable (the
rate). Similarly, spatial correlation statistics necessitate that a new variable be
calculated (the spatial lag) to provide the input to the statistic. This was not
possible in the “out of the box” Geotools release we used to implement our web
analysis.

The original architecture also makes it difficult to implement true subsetting,
as opposed to zooming. In true subsetting, the classification of the selected
subset of locations is recomputed each time the subset changes, whereas in
zooming, the classification is unaffected. Again, the basic GeoData structure
does not lend itself to subsetting and recomputation.

Finally, there is limited user interaction. For example, it is not possible to
specify a different shape file as input, or to select a different variable from what
is hard coded in the original applet.

The need for flexible data manipulation, variable selection and subset com-
putations required us to customize the basic toolkit. This took the form of
several extensions to the standard collection of Geotools classes as well as the
development of a number of new classes.
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Set Up Fundamental Variables
Pass SFR and Field Name
Organize Outlook
Draw Map
Draw Graph

Main Applet

ClassificationShader

PopUp Dialog
Distribute SFR and Field Name
Distribute Classified SimpleGeoData

Classification Classes

Construct SimpleGeoData
Smooth Rates as SimpleGeoData
Classify SimpleGeoData

Legend Draw Classes

SFR and Field Name
Classified SimpleGeoData
Graphics

Moran Scatterplot

Calculate Spatial Weights
Calculate Spatial Lag
Calculate Global Moran's I
Plot Location of Each Record

Figure 2: Extended Geotools Architecture.

3.2 Geotools Class Extensions

An overview of the architecture of the extensions required to implement the
smoothing and correlation computations is given in Figure 2. The main dif-
ference with Figure 1 is that the GeoData object is no longer constructed in
the main applet, but instead only the Shape File Reader (SFR) is passed to
the ClassificationShader. This input is obtained from the user, by extracting
the name of the shape file through an html form embedded in the opening web
page. The ClassificationShader remains the central data dispatch and handles
a slightly more elaborate user interface through which the variable names and
type of classification are selected (see Figure 4). This is implemented in a new
class (Alert.class).

In contrast to the original Geotools, where the hard coded variable does not
require any additional computations, the construction of rates and the smooth-
ing operations must be carried out internally. The main computational work to
accomplish this is included in a number of extensions and new classes.

In our implementation, the Classification Classes handle both the construc-
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tion of the data to be mapped as well as the customized classifications needed for
the special outlier maps. The original Quantile class is extended to incorporate
the computation of rates, based on the field names for the numerator (Event)
and denominator (Base) passed by the user interface (Figure 4). This creates a
Geotools SimpleGeoData object, which is somewhat more flexible than the basic
GeoData object and can be used to handle most computed results (smoothed
rates, spatial lags) as well as subsets. New classification classes were developed
to handle each of the specialized outlier maps, the Percentile Map, Box Map
and Excess Rate Map.12 These are essentially specialized forms of the basic
Quantile map, but using different criteria to construct the classification.

In addition to the specialized classifications, new classes were also needed to
handle the computations required for the Empirical Bayes and spatial smoothing
operations. These are included among the Classification Classes as well.

3.3 Moran Scatterplot and Spatial Weights

The other main change from the original Geotools toolkit is the incorporation
of spatial correlation analysis, implemented by the addition of the Moran Scat-
terplot class (the box included on the upper right side of Figure 2). At first
sight, this might have been accomplished by customizing the available Geotools
class for a scatterplot. However, the ScatterPlot.class included in the Geotools
toolkit cannot properly accommodate subsetting, i.e., where the slope of the
Moran scatterplot is recalculated for a contiguous subset of locations. Also,
linking does not function properly for subsets. The new class takes the shape
field information from the main applet and constructs all the necessary auxil-
iary variables internally, i.e., the contiguity based spatial weights, the spatial
lag, and Moran’s I. These internal computations yield the coordinates of the
points in the plot (zi on the x-axis and [Wz]i on the y-axis), and the slope and
intercept of the regression line. This is recomputed and redrawn whenever a
subset is selected.

It may be worthwhile to elaborate upon the way in which the spatial weigths
are obtained. The Geotools toolkit includes a “contiguity matrix,” implemented
as a HashSet, an internal data structure. However, this data structure includes
considerable additional information (such as all point coordinates for each poly-
gon). The spatial lag construction (for the spatial smoother and for the Moran
scatterplot) only requires a subset of this, i.e., the IDs of the neighbors for each
location. Instead of using the built-in contiguity matrix, we derive our own
data structure from the HashSet and store this information in a SimpleGeoData
structure. This contains only the ID information and is kept in memory until a
new data set is specified. Subsetting is applied directly to this structure as well.
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Figure 3: Geotools Interface Figure 4: Customized Interface

3.4 User Interaction

User interaction in a web-based spatial analysis is two-fold, one aspect dealing
with the server, the other operating in the browser, on the client side. The
latter is managed by the Java applet. The main choices (variable, smoothing
procedure, etc.) are invoked by clicking on the legend box that appears when
the map is first drawn. Initially, this is a single button, but after clicking, an
interface appears as in Figure 4. Additionally, selected buttons appear in the
web page to invoke specific methods (see the illustrations in section 4).

The interaction on the server side ensures that the initialization parameters
are obtained to set the proper configuration for the Java applet. In a standard
html page, a “form” is used to record the selections, as illustrated in Figure
5. The form invokes a PHP script (on the server) that generates a web page
corresponding to the selected options. This web page includes one of three Java
applets, depending on the option selected. After this page is rendered on the
client (and the applet downloaded) all further interaction is through the Java
applet on the client.

There are three basic options, as illustrated in Figure 5.13 First, the screen
resolution can be customized in order to make sure the maps and graphs fit
on the user’s screen (assuming the browser window is maximized). Second, a
selection can be made from a series of maps/data sets included in a drop down
list. These data sets must be present on the server in a directory specified by
Geotools. At this point it is not possible for the user to upload shape files to

12Specifically, the Percentile.class, Box.class and Excess.class for, respectively, a percentile
map, a box map and an excess rate map

13This particular view is for a Safari web browser on a Mac G4 workstation, with the pages
served using the Apache server on a Linux workstation.
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Figure 5: Welcome Screen and General Options.

this directory without proper write permissions. The final option pertains to
the type of analysis to be carried out. The single map option is primarily for
visualization and smoothing, but only one map is rendered in the browser. This
is the fastest option, with the shortest time required to download the applet.
In contrast, the two map option renders both the smoothed map as well as the
original (unsmoothed) map, to allow direct comparison of outliers and other
features of the data. The three map option also provides space to draw the
Moran Scatterplot for the selected variable. These two options take longer to
download the applet.

Finally, the user can interact directly with the graphics, since all maps and
graphs are linked, such that clicking on a location in one of them highlights
the matching locations in the others. Also, all three graphics support zooming,
panning and subsetting.

4 Illustration

We provide a brief illustration of the functionality of the spatial analysis tools
using two sample data sets. One is a subset of the NCOVR US Homicide Atlas,
limited to counties surrounding St. Louis, MO (Messner et al. 1999, 2000).
The other contains data on colon cancer diagnoses in Appalachian counties.14

Both data sets are for rates, respectively homicide counts over population (for
1979-84) and colon cancer diagnosis counts over population (1994-98). Using

14Data compiled from individual cancer registry records and aggregated to the county level
by Eugene J. Lengerich, Pennsylvania State Cancer Institute, Pennsylvania State University.
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Figure 6: Excess Rate Map, St Louis Region Homicides (1979-84).

standard practice, the counts are aggregated over a small number of years to
avoid extreme heterogeneity.

We start with an Excess Rate map (or relative risk map) for the St. Louis
region homicide rates (Figure 6). The map is invoked by selecting the county
homicide count in the period 1979-84 (HC7984) as the “Event,” and the county
population in the same period (PO7984) as the “Base.” Also, the proper map
type must be clicked in the Legend Interface (see Figure 4). The buttons at
the top of the map allow zooming, panning and subsetting. For this particular
map type, the legend is hard coded, showing six intervals for the relative risk.15

Moving the mouse over each county triggers a pop up “tooltip” with the ID
value for that county (e.g., St. Clair county in Figure 6).

The map illustrates how both St. Louis city and St. Clair county have homi-
cide rates that far exceed the region-wide average. By contrast, outlying rural
counties have relative risks well below the region-wide average. This highlights
the dominance of the St. Louis-East St. Louis core when it comes to homicides
in the period under consideration.

The second example highlights the use of two maps to compare “raw” rates
(the simple ratio of events over base) to their smoothed counterparts. The top
map in Figure 7 shows an example for colon cancer rates that have been trans-

15The colors in the legend can be adjusted individually, but the default is based on recom-
mendations from ColorBrewer, http://www.colorbrewer.org. The same approach is taken in
all other thematic maps.
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Figure 7: EB Smoothing, Colon Cancer, Appalachia (1994-98). Two Box Maps
with smoothed map on top and original raw rate on bottom.

formed using the Empirical Bayes approach, shrinking the raw rates towards the
overall average for the Appalachian region. In this example, two Box Maps are
shown in the browser, the top map with the smoothed rates, and the bottom
map with the original raw rates. Note how Cameron county, identified as a
high outlier in the raw rate map (shown as a tooltip), does not maintain that
position in the smoothed map (on top).16 Instead, another county on the East-
ern edge of Pennsylvania’s Appalachia (Carbon county, not shown as a tooltip)
becomes an outlier in the smoothed map. The smoothing is invoked by clicking
on the “Smooth” button in the map window and selecting the specific smooth-
ing method in the drop down list. Counties that lose their outlier status after

16Note that the two county outlines are “linked” in the sense that moving the mouse over
the county in the lower map also highlights the county in the top map. This is near impossible
to see in the Figure shown as hard copy, but an important feature of the user interaction with
the map. The tooltip is only shown for the location that the mouse actually points to. In
Figure 7, this is Cameron county in the lower map.
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Figure 8: EB Subset Smoothing, Colon Cancer, Appalachia (1994-98). Two
Box Maps with smoothed map on top and original raw rate on bottom.

smoothing are so-called spurious outliers, where the extreme rate is likely due
to a small population at risk.

In the Empirical Bayes smoothing method, a central role is played by the
regional average to which the raw rates are shrunk. When the region is highly
heterogeneous, the choice of the overall regional average as the reference rate
may not be appropriate. More precisely, the choice of different subregions will
yield varying subregional averages.which affects the smoothing and the resulting
indication of outliers. We provide a way to assess the sensitivity of the results
to this choice by means of the subset command. Clicking on the corresponding
button turns the cursor into a selection rectangle. The classification underlying
the box map is recalculated for the selected counties, and, as a result, the
indication of outlier may change. For example, in Figure 8, a county appears as
a low end outlier, when the subset is reclassified for Pennsylvania counties only.
In contrast, the overall map (Figure 7) does not classify this county as a low
end outlier. Again, note how an upper outlier in the raw rate map disappears
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Figure 9: Spatial Smoothing, Colon Cancer, Appalachia (1994-98).

in the EB smoothed map. Other changes are minor in this map, likely due to
the smoothing of counts over time (the four year average used to compute the
county rates).

Spatial smoothing, shown in Figure 9, tends to emphasize broad subregional
trends. Note how the patterns are much stronger in the upper map than in the
lower map. The smoothed map highlights a North-South divide in the region,
suggesting spatial heterogeneity (and, possibly, spatial regimes). Again, the
indication of outlier changes between the raw rate map and the smoothed map,
supporting the importance of this type of sensitivity analysis before locations
are classified as “extreme.”

The final element in our analytical toolbox pertains to the visualization of
spatial autocorrelation by means of a Moran scatterplot. Figure 10 shows the
bottom two graphs in the three graph plot generated by the Java applet.17.

17Since no smoothing is applied in the univariate Moran scatterplot, the smoothed and
original map are identical



Web-Based Spatial Analysis 18

Figure 10: Moran Scatterplot, St. Louis Region Homicide Rate (1979-84)
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The illustration is for the same homicide rate in the St. Louis region as used
in Figure 6. The value of 0.196 is the slope of the regression line and suggests
strong positive spatial autocorrelation in the homicide rates.18 The highlighted
point in the scatterplot (in red) corresponds to St. Louis City, as indicated by
the linked graphs. Its position in the upper-right quadrant suggests that it is
part of a “cluster” of high homicide rates.

The position of the point might also indicate potentially high leverage on
the value of the statistic. To assess this, we select a subset of the counties to
the East of St. Louis, but not including the city. The spatial pattern of the
homicide rates, with a recalculated classification for the Box Map is shown in the
top half of Figure 11. Note how in addition to St. Clair county (East St. Louis),
an additional county in the Southern part of the map is now classified as an
upper outlier (relative to the other values within the selected region). Also note
how the recalculated Moran’s I no longer suggests any spatial autocorrelation
(the line is essentially horizontal), illustrating the heavy leverage exerted by the
single St. Louis observation.19 In other words, once St. Louis city is removed
from the sample, and the focus is on the more rural counties surrounding the
city, the indication of strong spatial patterning disappears, and, instead, spatial
randomness seems to be the appropriate conclusion. A complete analysis would
assess this for other potential high leverage points as well.

Finally, note how the point to the utmost right in the Moran scatterplot of
Figure 11 is more than five standard deviations from the mean. This qualifies it
as an outlier in the traditional sense of descriptive statistics, as confirmed by its
classification in the box map. Moreover, since it is in the lower-right quadrant
of the scatterplot, it also corresponds to a spatial outlier, a location with a much
higher homicide rate than its surrounding neighbors.

5 Conclusion

In this paper, we outlined an initial framework to implement spatial data anal-
ysis functions in an internet GIS. Our efforts are a “work in progress” and part
of a much larger and more comprehensive endeavor to develop spatial analyti-
cal software tools as part of the program of the Center for Spatially Integrated
Social Science (CSISS).20 While the current tools serve their purpose, several
important issues warrant further scrutiny.

The range of spatial analytical methods included in the framework is clearly
limited. In part this is by design, given the specific objective to provide an
interactive front end to an atlas. However, part of the limitation also has to
do with performance issues encountered for medium size and larger data sets.

18It is important to note that this does not indicate “significance” of the spatial autocor-
relation statistic, but only shows its magnitude. A formal hypothesis test is not currently
included, but would be required before the value of 0.196 can be characterized as indicating
significant spatial autocorrelation.

19See Messner et al. (1999) for a more in-depth analysis of outliers in this data set. The
overall findings of regional heterogeneity were similar to what is illustrated here.

20See http://sal.agecon.uiuc.edu/csiss/index.html.
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Figure 11: Moran Scatterplot, East Subregion Homicide Rate (1979-84)
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The download time for the applet increases considerably when more functions
are included, so it is easy to envisage a point where this approach becomes
impractical.

In addition, Java as a language is not optimal as a platform for highly in-
tensive numerical operations. While this is not a constraint for the currently
included methods, techniques that require more computation (such as random-
ization tests for spatial autocorrelation) may need to be implemented in a a dif-
ferent language and/or warrant the development of more optimal data structures
in order to be completed within a time frame required for real time interaction
with the data. This calls for a more careful consideration of the division of labor
between the server and client. As many others have argued, the more compu-
tationally intense operations should probably be carried out on the server, with
user interaction and simple calculations allocated to the client. The exact na-
ture of the tradeoffs associated with this balancing act merit further attention,
and are the subject of ongoing research.

Finally, even given these limitations, the current framework provides some
insight into the complexities of the characterization of spatial outliers and the
sensitivity of the “map” to various assumptions made in the process. This
pedagogical objective is reached without requiring the user to have access to
advanced statistical or GIS software, a main advantage of the web-based ap-
proach. It is hoped that continued work along these lines will further advance
the dissemination of spatial analytical techniques to a broader audience.21
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