Source code for pygeoda.sa.moran

from ..libgeoda import gda_localmoran, gda_bi_localmoran, VecBool, gda_batchlocalmoran, VecVecBool, gda_localmoran_eb
from .lisa import lisa, batchlisa

__author__ = "Xun Li <lixun910@gmail.com>"

[docs]def local_moran(w, data, **kwargs): """Local Moran statistics. Args: w (Weight): An instance of Weight class. data (tuple/list/pandas.Series): A tuple of numeric values of selected variable undefs (tuple/list, optional): A tuple of boolean values to indicate which value is undefined or null permutations (int, optional): The number of permutations for the LISA computation permutation_method (str, optional): The permutation method used for the LISA computation. Options are {'complete', 'lookup-table'}. Default is 'complete'. significance_cutoff (float, optional): A cutoff value for significance p-values to filter not-significant clusters cpu_threads (int, optional): The number of cpu threads used for parallel LISA computation seed (int, optional): The seed for random number generator Returns: lisa: An instance of lisa class represents the results of lisa computation """ if w == None: raise ValueError("Weights is None.") if w.num_obs != len(data): raise ValueError("The size of data doesnt not match the number of observations.") undefs = VecBool() if 'undefs' not in kwargs else kwargs['undefs'] significance_cutoff = 0.05 if 'significance_cutoff' not in kwargs else kwargs['significance_cutoff'] permutations = 999 if 'permutations' not in kwargs else kwargs['permutations'] permutation_method = 'complete' if 'permutation_method' not in kwargs else kwargs['permutation_method'] cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads'] seed = 123456789 if 'seed' not in kwargs else kwargs['seed'] lisa_obj = gda_localmoran(w.gda_w, list(data), list(undefs), significance_cutoff, cpu_threads, permutations, permutation_method, seed) return lisa(lisa_obj)
[docs]def local_bimoran(w, data1, data2, **kwargs): """Bivariate local Moran statistics. The bivariate Local Moran’s I captures the relationship between the value for one variable at location i, and the average of the neighboring values for another variable. Args: w (Weight): An instance of Weight class. data1 (tuple/list/pandas.Series): A tuple of numeric values of first variable data1 (tuple/list/pandas.Series): A tuple of numeric values of second variable undefs (tuple/list, optional): A tuple of boolean values to indicate which value is undefined or null permutations (int, optional): The number of permutations for the LISA computation permutation_method (str, optional): The permutation method used for the LISA computation. Options are {'complete', 'lookup-table'}. Default is 'complete'. significance_cutoff (float, optional): A cutoff value for significance p-values to filter not-significant clusters cpu_threads (int, optional): The number of cpu threads used for parallel LISA computation seed (int, optional): The seed for random number generator Returns: lisa: An instance of lisa class represents the results of lisa computation """ if w == None: raise ValueError("Weights is None.") if w.num_obs != len(data1) or len(data1) != len(data2): raise ValueError("The size of data doesnt not match the number of observations.") undefs = VecBool() if 'undefs' not in kwargs else kwargs['undefs'] significance_cutoff = 0.05 if 'significance_cutoff' not in kwargs else kwargs['significance_cutoff'] permutations = 999 if 'permutations' not in kwargs else kwargs['permutations'] permutation_method = 'complete' if 'permutation_method' not in kwargs else kwargs['permutation_method'] cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads'] seed = 123456789 if 'seed' not in kwargs else kwargs['seed'] lisa_obj = gda_bi_localmoran(w.gda_w, list(data1), list(data2), list(undefs), significance_cutoff, cpu_threads, permutations, permutation_method, seed) return lisa(lisa_obj)
def local_moran_eb(w, event_data, base_data, **kwargs): """The function to apply local Moran with EB Rate statistics. The EB rate is first computed from "event" and "base" variables, and then used in local moran statistics. Args: w (Weight): An instance of Weight class event_data (tuple/list/pandas.Series): A numeric tuple of selected "event" variable base_data (tuple/list/pandas.Series): A numeric tuple of selected "base" variable permutations (int, optional): The number of permutations for the LISA computation permutation_method (str, optional): The permutation method used for the LISA computation. Options are {'complete', 'lookup-table'}. Default is 'complete'. significance_cutoff (float, optional): A cutoff value for significance p-values to filter not-significant clusters cpu_threads (int, optional): The number of cpu threads used for parallel LISA computation seed (int, optional): The seed for random number generator Returns: lisa: An instance of lisa class represents the results of lisa computation """ if w == None: raise ValueError("Weights is None.") if w.num_obs != len(event_data) or w.num_obs != len(base_data): raise ValueError("The size of data doesnt not match the number of observations.") significance_cutoff = 0.05 if 'significance_cutoff' not in kwargs else kwargs['significance_cutoff'] permutations = 999 if 'permutations' not in kwargs else kwargs['permutations'] permutation_method = 'complete' if 'permutation_method' not in kwargs else kwargs['permutation_method'] cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads'] seed = 123456789 if 'seed' not in kwargs else kwargs['seed'] lisa_obj = gda_localmoran_eb(w.gda_w, list(event_data), list(base_data), significance_cutoff, cpu_threads, permutations, permutation_method, seed) return lisa(lisa_obj)
[docs]def batch_local_moran(w, data, **kwargs): """Apply local moran statistics on a set of variables Args: w (Weight): An instance of Weight class. data (list/pandas.dataframe): A list of numeric array of selected variables permutations (int, optional): The number of permutations for the LISA computation permutation_method (str, optional): The permutation method used for the LISA computation. Options are {'complete', 'lookup-table'}. Default is 'complete'. significance_cutoff (float, optional): A cutoff value for significance p-values to filter not-significant clusters cpu_threads (int, optional): The number of cpu threads used for parallel LISA computation seed (int, optional): The seed for random number generator Returns: lisa: An instance of BatchLisa class represents the results of lisa computations """ if w == None: raise ValueError("Weights is None.") if (not isinstance(data, list)) or (len(data) < 1): raise ValueError("The data has to be a list of numeric array of selected variables.") if w.num_obs != len(data[0]): raise ValueError("The size of data doesnt not match the number of observations.") if type(data).__name__ == "DataFrame": data = data.values.transpose().tolist() undefs = VecVecBool() if 'undefs' not in kwargs else kwargs['undefs'] permutations = 999 if 'permutations' not in kwargs else kwargs['permutations'] permutation_method = 'complete' if 'permutation_method' not in kwargs else kwargs['permutation_method'] significance_cutoff = 0.05 if 'significance_cutoff' not in kwargs else kwargs['significance_cutoff'] cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads'] seed = 123456789 if 'seed' not in kwargs else kwargs['seed'] lisa_obj = gda_batchlocalmoran(w.gda_w, data, undefs, significance_cutoff, cpu_threads, permutations, permutation_method, seed) return batchlisa(lisa_obj)