Source code for pygeoda.sa.quantile_lisa

from ..libgeoda import gda_quantilelisa, gda_multiquantilelisa
from ..libgeoda import VecBool, VecInt, VecVecDouble, VecVecBool, VecDouble
from .lisa import lisa

__author__ = "Xun Li <lixun910@gmail.com>, Hang Zhang <zhanghanggis@163.com>"

'''
Changes:
1/21/2021 update quantile_lisa; add multiquantile_lisa
2/11/2021 update local_quantilelisa, local_multiquantilelisa
'''

[docs]def local_quantilelisa(w, data, k, q, **kwargs): """Quantile LISA Statistics The function to apply quantile LISA statistics Args: w (Weight): A spatial Weights object data (tuple/list/pandas.Series): A list of numeric values of selected variable k (int): The number of quantiles, range[1, n-1] q (int): The index of selected quantile for lisa, range[0, k-1] undefs (list, optional): A list of boolean values to indicate which value is undefined or null permutations (int, optional): The number of permutations for the LISA computation permutation_method (str, optional): The permutation method used for the LISA computation. Options are {'complete', 'lookup-table'}. Default is 'complete'. significance_cutoff (float, optional): A cutoff value for significance p-values to filter not-significant clusters cpu_threads (int, optional): The number of cpu threads used for parallel LISA computation seed (int, optional): The seed for random number generator Returns: lisa: An instance of lisa class represents the results of quantile lisa """ if w == None: raise ValueError("Weights is None.") if data is None: raise ValueError("The data from selected variable is empty.") if k == None or k < 1: raise ValueError("The value of k needs to be greater than 1 ") if q == None or q < 0: raise ValueError("The value of q needs to be greater than 0") elif q > k: raise ValueError("The value of q needs to be smaller than or equal to k") undefs = VecBool() if 'undefs' not in kwargs else kwargs['undefs'] significance_cutoff = 0.05 if 'significance_cutoff' not in kwargs else kwargs['significance_cutoff'] permutations = 999 if 'permutations' not in kwargs else kwargs['permutations'] permutation_method = 'complete' if 'permutation_method' not in kwargs else kwargs['permutation_method'] cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads'] seed = 123456789 if 'seed' not in kwargs else kwargs['seed'] lisa_obj = gda_quantilelisa(w.gda_w, k, q, list(data), list(undefs), significance_cutoff, cpu_threads, permutations, permutation_method, seed) return lisa(lisa_obj)
[docs]def local_multiquantilelisa(w, data, k, q, **kwargs): """Multivariate Quantile LISA Statistics The function to apply multivariate quantile LISA statistics Args: w (Weight): A spatial Weights object data (list or dataframe): A list of numeric vectors of selected variable or a data frame of selected variables e.g. guerry[['Crm_prs', 'Literacy']] k (tuple): A tuple of "k" (int) values indicate the number of quantiles for each variable q (tuple): A tuple of "q" (int) values indicate which quantile or interval for each variable used in local join count statistics permutations (int, optional): The number of permutations for the LISA computation permutation_method (str, optional): The permutation method used for the LISA computation. Options are {'complete', 'lookup-table'}. Default is 'complete'. significance_cutoff (float, optional): A cutoff value for significance p-values to filter not-significant clusters cpu_threads (int, optional): The number of cpu threads used for parallel LISA computation seed (int, optional): The seed for random number generator Returns: lisa: An instance of lisa class represents the results of quantile lisa """ undefs = VecVecBool() if 'undefs' not in kwargs else kwargs['undefs'] significance_cutoff = 0.05 if 'significance_cutoff' not in kwargs else kwargs['significance_cutoff'] permutations = 999 if 'permutations' not in kwargs else kwargs['permutations'] permutation_method = 'complete' if 'permutation_method' not in kwargs else kwargs['permutation_method'] cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads'] seed = 123456789 if 'seed' not in kwargs else kwargs['seed'] if w == None: raise ValueError("Weights is None.") if len(data) == 0: raise ValueError("The input data can not be empty.") if len(data) != len(k) or len(k) != len(q): raise ValueError("The size of k, q and data are not matched.") if type(data).__name__ == "DataFrame": data = data.values.transpose().tolist() lisa_obj = gda_multiquantilelisa(w.gda_w, k, q, data, undefs, significance_cutoff, cpu_threads, permutations, permutation_method, seed) return lisa(lisa_obj)