.. _map_classification_ref: .. currentmodule:: pygeoda 4 Map Classification ==================== pygeoda provids following methods for univariate map classification: * Hinge box breaks: hinge15_breaks() and hinge30_breaks() * Natural breaks: natural_breaks() * Quantile breaks: quantile_breaks() * Percentile breaks: percentile_breaks() * Standard deviation breaks: stddev_breaks() These methods of map classification calculate a corresponding breakpoint list for a selected variable. For more information about the map classification, please read Dr. Luc Anselin's lab note: http://geodacenter.github.io/workbook/6a_local_auto/lab6a.html. 4.1 Hinge Box Breaks -------------------- Hinge Box Breaks calculates a list of breakpoints, including the top, bottom, median, and two quartiles of the data. Here the hinge can be 1.5 or 3.0. For example, we can call function `hinge15_breaks()` or `hinge30_breaks` with the data "Crm_prp" as input parameter: :: >>> breaks15 = pygeoda.hinge15_breaks(guerry['Crm_prp']) >>> print(breaks15) (1190.0, 5990.0, 7624.0, 9190.0, 13990.0) >>> breaks30 = pygeoda.hinge30_breaks(guerry['Crm_prp']) >>> print(breaks30) (-3610.0, 5990.0, 7624.0, 9190.0, 18790.0) 4.2 Natural Breaks ------------------ Natural Breaks calculates a list of breakpoints based on the fracture principle of maximum similarity within a group. For example, we can call function `natural_breaks()` with the data "Crm_prp" and the number of classification “k” as input parameters: :: >>> breaks = pygeoda.natural_breaks(5, guerry['Crm_prp']) >>> print(breaks) (5521.0, 7204.0, 10237.0, 15890.0) 4.3 Quantile Breaks ------------------- Quantile Breaks is based on sorted values for a variable that are then grouped into bins that each have the same number of observations, the so-called quantiles. For example, we can call function `quantile_breaks()` with the data "Crm_prp", and the number of classification “k” as input parameters: :: >>> breaks = pygeoda.quantile_breaks(5, guerry['Crm_prp']) >>> print(breaks) (5439.0, 6886.0, 8205.0, 9584.5) 4.4 Percentile Breaks --------------------- Percentile Breaks divides the data into six ranges: the lowest 1%, 1-10%, 10-50%, 50-90%, 90-99% and the top 1%. It returns the range boundaries as a breakpoint list. For example, we can call function `natural_breaks()` with the data "Crm_prp" as input parameter: :: >>> breaks = pygeoda.percentile_breaks(guerry['Crm_prp']) >>> print(breaks) (1906.3, 4529.0, 7624.0, 10954.0, 19467.8) 4.5 Standard Deviation Breaks ----------------------------- Standard Deviation Breaks calculates the number of standard deviational units of the range from lowest to highest, returning a breakpoint list. For example, we can call function `stddev_breaks()` with the data "Crm_prp" as input parameter: :: >>> breaks = pygeoda.stddev_breaks(guerry['Crm_prp']) >>> print(breaks) (1784.1106064421238, 4832.725891456355, 7881.341176470588, 10929.95646148482, 13978.571746499052)