The function to apply multivariate quantile LISA statistics
local_multiquantilelisa(
w,
df,
k,
q,
permutations = 999,
permutation_method = "complete",
significance_cutoff = 0.05,
cpu_threads = 6,
seed = 123456789
)
An instance of Weight object
A data frame with selected variables only. E.g. guerry[c("TopCrm", "TopWealth", "TopLit")]
A vector of "k" values indicate the number of quantiles for each variable. Value range e.g. [1, 10]
A vector of "q" values indicate which quantile or interval for each variable used in local join count statistics. Value stars from 1.
(optional) The number of permutations for the LISA computation
(optional) The permutation method used for the LISA computation. Options are ('complete', 'lookup'). Default is 'complete'.
(optional) A cutoff value for significance p-values to filter not-significant clusters
(optional) The number of cpu threads used for parallel LISA computation
(optional) The seed for random number generator
An instance of LISA-class
library(sf)
guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda")
guerry <- st_read(guerry_path)
#> Reading layer `Guerry' from data source
#> `/Users/runner/work/_temp/Library/rgeoda/extdata/Guerry.shp'
#> using driver `ESRI Shapefile'
#> Simple feature collection with 85 features and 29 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: 47680 ymin: 1703258 xmax: 1031401 ymax: 2677441
#> Projected CRS: NTF (Paris) / Lambert zone II
queen_w <- queen_weights(guerry)
lisa <- local_multiquantilelisa(queen_w, guerry[c("Crm_prp", "Litercy")],
k=c(4,4), q=c(1,1))
clsts <- lisa_clusters(lisa)
clsts
#> [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [39] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [77] 0 0 0 0 0 0 0 0 0