Source code for pygeoda.clustering.maxp

__author__ = "Xun Li <lixun910@gmail.com>"

from ..libgeoda import VecVecDouble, VecPair, VecDouble, VecInt, Pair
from ..libgeoda import gda_maxp_greedy, gda_maxp_sa, gda_maxp_tabu
from ..libgeoda import gda_betweensumofsquare, gda_totalsumofsquare, gda_withinsumofsquare, flat_2dclusters

'''
Changes:
1/20/2021 Add maxp_greedy, maxp_sa, maxp_tabu
'''

[docs]def maxp_greedy(w, data, bound_variable, min_bound, **kwargs): ''' A greedy algorithm to solve the max-p-region problem The max-p-region problem is a special case of constrained clustering where a finite number of geographical areas are aggregated into the maximum number of regions (max-p-regions), such that each region is geographically connected and the clusters could maximize internal homogeneity. Arguments: w (Weight): an instance of Weight class data (list or dataframe): A list of numeric vectors of selected variable or a data frame of selected variables e.g. guerry[['Crm_prs', 'Literacy']] bound_variable (tuple): A numeric vector of selected bounding variable min_bound (float): A minimum value that the sum value of bounding variable int each cluster should be greater than iterations (int, optional): The number of iterations of greedy algorithm. Defaults to 99. init_regions (tuple, optional): The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters scale_method (str, optional): One of the scaling methods {'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust'} to apply on input data. Default is 'standardize' (Z-score normalization). distance_method (str, optional): The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan" random_seed (int, optional): The seed for random number generator. Defaults to 123456789. It is the same as GeoDa software cpu_threads (int, optional): The number of cpu threads used for parallel computation Returns: dict: A dict with keys {"Clusters", "TotalSS", "Within-clusterSS", "TotalWithin-clusterSS", "Ratio"} ''' iterations = 99 if 'iterations' not in kwargs else kwargs['iterations'] init_regions = [] if 'init_regions' not in kwargs else kwargs['init_regions'] scale_method = "standardize" if "scale_method" not in kwargs else kwargs['scale_method'] distance_method = 'euclidean' if 'distance_method' not in kwargs else kwargs['distance_method'] random_seed = 123456789 if 'random_seed' not in kwargs else kwargs['random_seed'] cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads'] if w.num_obs < 1: raise ValueError("The weights is not valid.") if len(data) < 1: raise ValueError("The data from selected variable is empty.") if len(bound_variable) != w.num_obs: raise ValueError("The bound_variable has to be a list of numeric values, e.g. a column of input table.") if min_bound <= 0: raise ValueError("The min_bound has to be a positive numeric value.") in_data = VecVecDouble() if type(data).__name__ == "DataFrame": data = data.values.transpose().tolist() for d in data: in_data.push_back(d) min_bounds = VecPair() max_bounds = VecPair() min_bounds.push_back((min_bound, list(bound_variable))) in_init_regions = VecInt(list(init_regions)) cluster_ids = gda_maxp_greedy(w.gda_w, in_data, scale_method, iterations, min_bounds, max_bounds, in_init_regions, distance_method, random_seed, cpu_threads) between_ss = gda_betweensumofsquare(cluster_ids, in_data) total_ss = gda_totalsumofsquare(in_data) ratio = between_ss / total_ss within_ss = gda_withinsumofsquare(cluster_ids, in_data) return { "Total sum of squares" : total_ss, "Within-cluster sum of squares" : within_ss, "Total within-cluster sum of squares" : between_ss, "The ratio of between to total sum of squares" : ratio, "Clusters" : flat_2dclusters(w.num_obs, cluster_ids), }
[docs]def maxp_sa(w, data, bound_variable, min_bound, cooling_rate=0.85, **kwargs): ''' A simulated annealing algorithm to solve the max-p-region problem The max-p-region problem is a special case of constrained clustering where a finite number of geographical areas are aggregated into the maximum number of regions (max-p-regions), such that each region is geographically connected and the clusters could maximize internal homogeneity. Arguments: w (Weight): an instance of Weight class data (list or dataframe): A list of numeric vectors of selected variable or a data frame of selected variables e.g. guerry[['Crm_prs', 'Literacy']] bound_variable (tuple): A numeric vector of selected bounding variable min_bound (float): A minimum value that the sum value of bounding variable int each cluster should be greater than cooling_rate (float): The cooling rate of a simulated annealing algorithm. Defaults to 0.85 sa_maxit (int): The number of iterations of simulated annealing. Defaults to 1 iterations (int, optional): The number of iterations of greedy algorithm. Defaults to 99. init_regions (tuple, optional): The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters scale_method (str, optional): One of the scaling methods {'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust'} to apply on input data. Default is 'standardize' (Z-score normalization). distance_method (str, optional): The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan" random_seed (int, optional): The seed for random number generator. Defaults to 123456789. It is the same as GeoDa software cpu_threads (int, optional): The number of cpu threads used for parallel computation Returns: dict: A dict with keys {"Clusters", "TotalSS", "Within-clusterSS", "TotalWithin-clusterSS", "Ratio"} ''' sa_maxit = 1 if 'sa_maxit' not in kwargs else kwargs['sa_maxit'] iterations = 99 if 'iterations' not in kwargs else kwargs['iterations'] init_regions = [] if 'init_regions' not in kwargs else kwargs['init_regions'] scale_method = "standardize" if "scale_method" not in kwargs else kwargs['scale_method'] distance_method = 'euclidean' if 'distance_method' not in kwargs else kwargs['distance_method'] random_seed = 123456789 if 'random_seed' not in kwargs else kwargs['random_seed'] cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads'] if cooling_rate <=0 or cooling_rate >=1: raise ValueError("Cooling rate should be in range (0,1).") if w.num_obs < 1: raise ValueError("The weights is not valid.") if len(data) < 1: raise ValueError("The data from selected variable is empty.") if len(bound_variable) != w.num_obs: raise ValueError("The bound_variable has to be a list of numeric values, e.g. a column of input table.") if min_bound <= 0: raise ValueError("The min_bound has to be a positive numeric value.") in_data = VecVecDouble() if type(data).__name__ == "DataFrame": data = data.values.transpose().tolist() for d in data: in_data.push_back(d) min_bounds = VecPair() max_bounds = VecPair() min_bounds.push_back((min_bound, list(bound_variable))) in_init_regions = VecInt(list(init_regions)) cluster_ids = gda_maxp_sa(w.gda_w, in_data, scale_method, iterations, cooling_rate, sa_maxit, min_bounds, max_bounds, in_init_regions, distance_method, random_seed, cpu_threads) between_ss = gda_betweensumofsquare(cluster_ids, in_data) total_ss = gda_totalsumofsquare(in_data) ratio = between_ss / total_ss within_ss = gda_withinsumofsquare(cluster_ids, in_data) return { "Total sum of squares" : total_ss, "Within-cluster sum of squares" : within_ss, "Total within-cluster sum of squares" : between_ss, "The ratio of between to total sum of squares" : ratio, "Clusters" : flat_2dclusters(w.num_obs, cluster_ids), }
[docs]def maxp_tabu(w, data, bound_variable, min_bound, tabu_length=10, **kwargs): ''' A tabu-search algorithm to solve the max-p-region problem The max-p-region problem is a special case of constrained clustering where a finite number of geographical areas are aggregated into the maximum number of regions (max-p-regions), such that each region is geographically connected and the clusters could maximize internal homogeneity. Arguments: w (Weight): an instance of Weight class data (list or dataframe): A list of numeric vectors of selected variable or a data frame of selected variables e.g. guerry[['Crm_prs', 'Literacy']] bound_variable (tuple): A numeric vector of selected bounding variable min_bound (float): A minimum value that the sum value of bounding variable int each cluster should be greater than tabu_length (int): The length of a tabu search heuristic of tabu algorithm. Defaults to 10. conv_tabu (int, optional): The number of non-improving moves. Defaults to 10. iterations (int, optional): The number of iterations of greedy algorithm. Defaults to 99. init_regions (tuple, optional): The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters scale_method (str, optional): One of the scaling methods {'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust'} to apply on input data. Default is 'standardize' (Z-score normalization). distance_method (str, optional): The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan" random_seed (int, optional): The seed for random number generator. Defaults to 123456789. It is the same as GeoDa software cpu_threads (int, optional): The number of cpu threads used for parallel computation Returns: dict: A dict with keys {"Clusters", "TotalSS", "Within-clusterSS", "TotalWithin-clusterSS", "Ratio"} ''' conv_tabu = 10 if 'conv_tabu' not in kwargs else kwargs['conv_tabu'] iterations = 99 if 'iterations' not in kwargs else kwargs['iterations'] init_regions = [] if 'init_regions' not in kwargs else kwargs['init_regions'] scale_method = "standardize" if "scale_method" not in kwargs else kwargs['scale_method'] distance_method = 'euclidean' if 'distance_method' not in kwargs else kwargs['distance_method'] random_seed = 123456789 if 'random_seed' not in kwargs else kwargs['random_seed'] cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads'] if w.num_obs < 1: raise ValueError("The weights is not valid.") if len(data) < 1: raise ValueError("The data from selected variable is empty.") if len(bound_variable) != w.num_obs: raise ValueError("The bound_variable has to be a list of numeric values, e.g. a column of input table.") if min_bound <= 0: raise ValueError("The min_bound has to be a positive numeric value.") in_data = VecVecDouble() if type(data).__name__ == "DataFrame": data = data.values.transpose().tolist() for d in data: in_data.push_back(d) min_bounds = VecPair() max_bounds = VecPair() min_bounds.push_back((min_bound, list(bound_variable))) in_init_regions = VecInt(list(init_regions)) cluster_ids = gda_maxp_tabu(w.gda_w, in_data, scale_method, iterations, tabu_length, conv_tabu, min_bounds, max_bounds, in_init_regions, distance_method, random_seed, cpu_threads) between_ss = gda_betweensumofsquare(cluster_ids, in_data) total_ss = gda_totalsumofsquare(in_data) ratio = between_ss / total_ss within_ss = gda_withinsumofsquare(cluster_ids, in_data) return { "Total sum of squares" : total_ss, "Within-cluster sum of squares" : within_ss, "Total within-cluster sum of squares" : between_ss, "The ratio of between to total sum of squares" : ratio, "Clusters" : flat_2dclusters(w.num_obs, cluster_ids), }