pygeoda.skater¶
- pygeoda.skater(k, w, data, **kwargs)[source]¶
Spatial C(K)luster Analysis by Tree Edge Removal
SKATER forms clusters by spatially partitioning data that has similar values for features of interest.
- Parameters
k (int) – number of clusters
w (Weight) – An instance of Weight class
data (list or dataframe) – A list of numeric vectors of selected variable or a data frame of selected variables e.g. guerry[[‘Crm_prs’, ‘Literacy’]]
bound_variable (tuple, optional) – A numeric vector of selected bounding variable
min_bound (float, optional) – a minimum value that the sum value of bounding variable int each cluster should be greater than
scale_method (str, optional) – One of the scaling methods {‘raw’, ‘standardize’, ‘demean’, ‘mad’, ‘range_standardize’, ‘range_adjust’} to apply on input data. Default is ‘standardize’ (Z-score normalization).
distance_method (str, optional) – {“euclidean”, “manhattan”} the distance method used to compute the distance betwen observation i and j. Defaults to “euclidean”. Options are “euclidean” and “manhattan”
random_seed (int,optional) – the seed for random number generator. Defaults to 123456789.
cpu_threads (int, optional) – The number of cpu threads used for parallel computation
- Returns
A dict with keys {“Clusters”, “TotalSS”, “Within-clusterSS”, “TotalWithin-clusterSS”, “Ratio”}
- Return type
dict